[1]Y. Ding, Q. Rao, K. W. Yu, L. Sun and G. P. Wang, Precise one-to-one equivalent nanocircuit models for layered metamaterials, New J. Phys. 26, 013038 (2024).
[2]L. Sun, Y. Lin, K. W. Yu and G. P. Wang, All-angle broadband ENZ metamaterials, New J. Phys. 24, 073016 (2022).
[3]L. Sun and G. P. Wang, Broadband epsilon-near-zero metamaterials and its application in optical field manipulation (Invited), Acta Photonica Sinica 51, 0151107 (2022).
[4]L. Sun, K. W. Yu, and G. P. Wang, Inverse design of broadband epsilon-near-zero metasurface with nanoscale airtube superlattice based on the Bergman-Milton spectral representation, Phys. Rev. B. 100, 125429 (2019).
[5]L. Sun, K. W. Yu, and G. P. Wang, Design anisotropic broadband ε-near-zero metamaterials: rigorous use of Bergman and Milton spectral representations, Phys. Rev. Appl. 9, 064020 (2018).
[6]L. Sun, J. Gao, and X. Yang, Klein tunneling near the Dirac points in metal-dielectric multilayer metamaterials, Sci. Rep. 7, 9678 (2017).
[7]L. Sun, X. Yang, and J. Gao, Analysis of nonlocal effective permittivity and permeability in symmetric metal-dielectric multilayer metamaterials, J. Opt. 18, 065101 (2016).
[8]L. Sun, J. Gao, and X. Yang, Optical nonlocality induced Zitterbewegung near the Dirac point in metal-dielectric multilayer metamaterials, Opt. Express 24, 7055 (2016).
[9]L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials, Phys. Rev. B 91, 195147 (2015).
[10]L. Sun, X. Yang, W. Wang, and J. Gao, Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials, J. Opt. 17, 035101 (2015).
[11]L. Sun, F. Cheng, C. J. Mathai, S. Gangopadhyay, J. Gao, and X. Yang, Experimental characterization of optical nonlocality in metal-dielectric multilayer metamaterials, Opt. Express 22, 22974 (2014).
[12]L. Sun, J. Gao, and X. Yang, Realizing broadband electromagnetic transparency with a graded-permittivity sphere, J. Opt. 16, 085101 (2014).
[13]L. Sun, X. Yang, and J. Gao, Loss-compensated broadband epsilon-near-zero metamaterials with gain media, Appl. Phys. Lett. 103, 201109 (2013).
[14]L. Sun, J. Gao, and X. Yang, Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials, Opt. Express 21, 21542 (2013).
[15]L. Sun, J. Gao, and X. Yang, Broadband epsilon-near-zero metamaterials with steplike metal-dielectric multilayer structures, Phys. Rev. B 87, 165134 (2013):
[16]L. Sun, S. Feng, and X. Yang, Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials, Appl. Phys. Lett. 101, 241101 (2012).
[17]L. Sun, K. W. Yu, and X. Yang, Integrated optical devices based on broadband epsilon-near-zero meta-atoms, Opt. Lett. 37, 3096 (2012).
[18]L. Sun and K. W. Yu, Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media, Appl. Phys. Lett. 100, 261903 (2012).
[19]L. Sun and K. W. Yu, Broadband transparency with a graded anisotropic metal-dielectric sphere, J. Opt. A-Pure Appl. Opt. 14, 055101 (2012).
[20]L. Sun and K. W. Yu, Strategy for designing broadband epsilon-near-zero metamaterials, J. Opt. Soc. Am. B-Opt. Phys. 29, 984 (2012).