个人简介
郭重涛,博士,副教授,博士生导师,于2009年获得西安电子科技大学电子信息工程专业学士学位,2014年获得西安电子科技大学通信与信息系统专业博士学位(导师:盛敏教授),2017至2018年在美国佐治亚理工学院作博士后研究(合作导师:Geoffrey Ye Li教授)。自2014年起在深圳大学电子与信息工程学院(原信息工程学院)先后担任讲师与副教授。
郭重涛博士的主要研究领域是无线网络的规划、组网、管理与优化,特别关注面向自动驾驶和智能交通的车联网,主持了国家自然科学基金面上项目与青年项目、广东省自然科学基金面上项目、深圳市自然科学基金面上项目等国家级、省部级、地市级等科研项目数项。在IEEE JSAC、IEEE TII、IEEE TWC、IEEE TCOM、IEEE TVT、IEEE GLOBECOM等国内外重要学术期刊和会议上发表论文40余篇,授权发明专利十余项。担任IEEE JSAC、IEEE TWC、IEEE TCOM等多个国际著名期刊和会议的审稿人,获评2017年IEEE CL期刊的模范审稿人,获评2021年IEEE WCL期刊的模范审稿人。获得2016年和2017年IEEE DSP最佳会议论文奖,于2019年被评为深圳市海外高层次人才和南山区领航人才。
★最新研究进展与职位需求,请参见个人主页。
联系方式
●办公室:深圳大学沧海校区致信楼N923
●电话:0755-22673422
●邮箱:ctguo[AT]szu[dot]edu[dot]cn
●主页:https://tommyguoct.github.io/Chinese.html
当前研究方向
●面向自动驾驶的协同感知技术
●低轨卫星网络通导遥融合方法
●机器学习在无线网络中的应用
职位需求
●每年招收信息与通信工程、通信工程等专业的博士与硕士研究生数名,要求热爱学术科研,具有较强的数学和英语基础,追求卓越,勤奋踏实。
●深圳大学电信学院大二或以上在读本科生数名,要求有志于在学术科研方面继续深造,具有较强的数学和英语基础,追求卓越,勤奋踏实。
部分论文(此处未更新,最新进展请参见个人主页)
[1]Y. Liu, G. Liu, L. Liang, H. Ye, C. Guo, and S. Jin, ‘‘Deep reinforcement learning-based user scheduling for collaborative perception,’’ IEEE Transactions on Mobile Computing, Accepted, 2025.
[2]H. Fang, K. Huang, H. Ye, C. Guo, L. Liang, X. Li, and S. Jin, ‘‘Power allocation for delay optimization in device-to-device networks: A graph reinforcement learning approach,” IEEE Transactions on Vehicular Technology, Accepted, 2025.
[3]Z. Huang, C. Guo, and X. Wang, ‘‘AoI-aware multi-level dynamic power control with sum-power constraint in downlink networks,’’ IEEE Transactions on Communications, Accepted, July 2025.
[4]M. Sheng, C. Guo, and L. Huang, “Integrated communication, navigation, and remote sensing in LEO networks with vehicular applications,” IEEE Wireless Communications, vol. 32, no. 3, pp. 140-147, June 2025.
[5]C. Guo, S. Liu, B. Liao, Z. Wang, and L. Liang, ‘‘AoI-driven power allocation and batch sampling control for V2V status update communications,’’ IEEE Transactions on Industrial Informatics, vol. 20, no. 1, pp. 291-302, Jan 2024.
[6]C. Guo, Z. Li, L. Liang, and G. Y. Li, ‘‘Reinforcement learning based power control for reliable mission-critical wireless transmission,’’ IEEE Internet of Things Journal, vol. 10, no. 23, pp. 20868-20883, Dec. 2023
[7]C. Guo, X. Wang, L. Liang, and G. Y. Li, ‘‘Age of information, latency, and reliability in intelligent vehicular networks,’’ IEEE Network, vol. 36, no. 6, pp. 109-116, Nov. 2023.
[8]C. Guo, C. Guo, S. Zhang, and Z. Ding, ‘‘Adaptive relaying protocol design and analysis for short-packet cooperative NOMA,’’ IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pp. 2689-2694, Feb. 2023.
[9]X. Fu, C. Guo, Y. Qu, and X.-H. Lin, ‘‘Resource allocation and blocklength selection for low-latency vehicular communications,’’ IEEE Wireless Communications Letters, vol. 10, no. 5, pp. 914-918, May 2021.
[10]C. Guo, W. He, and G. Y. Li, ‘‘Optimal fairness-aware resource supply and demand management for mobile edge computing,’’ IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 678-682, Mar. 2021.
[11]Y. Qu, C. Guo, X. Fu, and X.-H. Lin, ‘‘Outage aware power control for vehicular wireless energy transfer over dynamic channels,’’ IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 1089-1093, Jan. 2021.
[12]C. Guo, C. Guo, S. Zhang, and Z. Ding, ‘‘UAV-enabled NOMA networks analysis with selective incremental relaying and imperfect CSI,’’ IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 16276-16281, Dec. 2020.
[13]C. Guo, L. Liang, and G. Y. Li, ‘‘Resource allocation for V2X communications: A large deviation theory perspective,’’ IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1108-1111, Aug. 2019.
[14]C. Guo, L. Liang, and G. Y. Li, ‘‘Resource allocation for vehicular communications with low latency and high reliability,’’ IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 3887-3902, Aug. 2019.
[15]C. Guo, L. Liang, and G. Y. Li, ‘‘Resource allocation for high-reliability low-latency vehicular communications with packet retransmission,’’ IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 6219-6230, Jul. 2019.
[16]C. Guo, L. Liang, and G. Y. Li, ‘‘Resource allocation for low-latency vehicular communications: An effective capacity perspective,’’ IEEE Journal on Selected Areas in Communications, vol. 37. no. 4, pp. 905-917, Apr. 2019.
[17]C. Guo, B. Liao, D. Feng, C. He, and X. Ma, ‘‘Minimum secrecy throughput maximization in wireless powered secure communications,’’ IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2571-2581, Mar. 2018.
[18]X. Lin, L. Huang, C. Guo, P. Zhang, M. Huang, and J. Zhang, ‘‘Energy-efficient resource allocation in TDMS based wireless powered communication networks,’’ IEEE Communications Letters, vol. 21, no. 4, pp. 861-864, Apr. 2017.
[19]C. Guo, B. Liao, L. Huang, P. Zhang, M. Huang, and J. Zhang, ‘‘On proportional fairness in power allocation for two-tone spectrum-sharing networks,’’ IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 10090-10096, Dec. 2016.
[20]B. Liao, S. C. Chan, L. Huang, and C. Guo, ‘‘Iterative methods for subspace and DOA estimation in nonuniform noise,’’ IEEE Transactions on Signal Processing, vol. 64, no. 12, pp. 3008-3020, Jun. 2016.
[21]C. Guo, Y. Zhang, M. Sheng, X. Wang, and Y. Li, ‘‘α-fair power allocation in spectrum-sharing networks,’’ IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 3771-3777, May 2016.
[22]C. Guo, B. Liao, L. Huang, X. Lin, and J. Zhang, ‘‘On convexity of fairness-aware energy-efficient power allocation in spectrum-sharing networks,’’ IEEE Communications Letters, vol. 20, no. 3, pp. 534-537, Mar. 2016.
[23]C. Guo, B. Liao, L.Huang, Q. Li, and X. Lin, ‘‘Convexity of fairness-aware resource allocation in wireless powered communication networks,’’ IEEE Communications Letters, vol. 20, no. 3, pp. 474-477, Mar. 2016.
[24]C. Guo, M. Sheng, X. Wang, and Y. Zhang, ‘‘Throughput maximization with short-term and long-term Jain's index constraints in downlink OFDMA systems,’’ IEEE Transactions on Communications, vol. 62, no. 5, pp. 1503-1517, May 2014.
[25]C. Guo, M. Sheng, Y. Zhang, and X. Wang, ‘‘A Jain's index perspective on alpha-fairness resource allocation over slow-fading channels,’’ IEEE Communications Letters, vol. 17, no. 4, pp. 705-708, Apr. 2013.