
Decentralized Computation Offloading and
Resource Allocation in MEC by Deep

Reinforcement Learning

Yeteng Liang, Yejun He�, Xiaoxu Zhong

Guangdong Engineering Research Center of Base Station Antennas and Propagation

Shenzhen Key Laboratory of Antennas and Propagation

College of Electronics and Information Engineering, Shenzhen University, 518060, China

Email: 1430396120@qq.com, heyejun@126.com�, 1031772642@qq.com

Abstract—Mobile edge computing (MEC) as a promising tech-
nology to relieve edge user equipment (UE) computing pressure
by offloading part of a task, is able to reduce the execution delay
and energy consumption effectively, and improve the quality
of computation experience for mobile users. Nevertheless, we
are facing a challenge of design of computation offloading and
resource allocation strategy on a part of a task offloaded to
MEC server. A task is divided into two sub-tasks firstly. Then
one of the two sub-tasks is executed locally, and the other will be
offloaded to MEC server that is located near the base station (BS).
Based on dynamic offloading and resource allocation strategy,
the best offloading proportion of a task, local calculation power
and transmission power are investigated by deep reinforcement
learning (DRL). In this paper, we propose two DRL-based
approaches, which are named as deep Q network (DQN) and deep
deterministic policy gradient (DDPG), to minimize the weighted
sum cost including execution delay and energy consumption of
UE. DQN and DDPG can deal with large scale state spaces and
learn efficient offloading proportion of task and power allocation
independently at each UE. Simulation results demonstrate that
each UE can learn the effective execution policies, and the
proposed schemes achieve a significant reduction in the sum cost
of task compared with other traditional baselines.

Index Terms—MEC, offloading proportion, power allocation,
deep deterministic policy gradient (DDPG), deep Q network
(DQN)

I. INTRODUCTION

Mobile Edge computing (MEC) supports computationally

intensive applications in mobile devices by offloading pro-

cessing and storage to remote edge servers over the wireless

networks. Due to limited computation resources, edge UEs

(user equipments) can not complete some calculations on their

own. Thus UEs have to offload part or all of a task to cloud

computing server for calculation to reduce the execution delay

and energy consumption. However, confronting overcrowding

big data, the core network suffers from fatal congestion and

execution delay, greatly reducing quality of service (QoS).

To solve the above problems effectively, the technology of

MEC was firstly proposed by the European Telecommuni-

cation Standardization Association (ETSI). MEC can provide

cloud-based IT service environment, equipment management,

computing and storage capabilities and other functions in the

wireless access network close to the edge UEs [1].

In recent years, the optimization of the task offloading

strategy becomes one of research hot-spots in MEC. The

task offloading strategy of UE is mainly divided into binary

offloading and partial offloading. The former means that all

of a task of a UE are either processed locally or offloaded to

MEC server for processing. The latter refers to that all of a task

can be divided randomly or according to certain regulations,

i.e., a part of which is left to be calculated locally while the

other is offloaded to MEC server to execute.

References [2], [3] and [4] focused on the partial offloading

strategy. Reference [2] proposed an optimal adaptive algorithm

based on joint optimization method and [3] utilized dynamic

voltage frequency scaling (DVFS) technique to minimize

energy consumption. However, both are based on the single

UE MEC system. Reference [4] proposed two traditional opti-

mization algorithms called sequential quadratic programming

(SQP) and deep neural network (DNN) algorithm to minimize

energy consumption. However, the goal of these works is to

minimize the energy consumption of UE, without considering

the task execution delay, simultaneously.

References [5] and [6] adopted the trade-off between ex-

ecution delay and energy consumption of task to solve the

above problems. For the optimization framework of single UE

MEC system, [5] proposed an offloading decision algorithm

based on linear programming relaxation (LPR) and semi-

definite relaxation (SDR) algorithm, where the performance

of execution delay and energy consumption has been greatly

improved. However, the UE’s calculation frequency is still

constant. In order to determine the calculation offloading

strategy, the optimal frequency of local computation and

optimal transmission power, [6] developed an online algorithm

based on the Lyapunov optimization algorithm [7], which

achieved optimal sum cost of task. However, the algorithm

is not suitable for complex and real-time MEC system.

To this end, we propose two deep Q network algorithms

based on the principle of deep reinforcement learning and

partial offloading. Each user can learn effective dynamic

offloading strategies and power allocation to get the minimum

the sum cost of task for multi UEs scenario. The major

contributions of this paper are as follows.

2020 IEEE/CIC International Conference on Communications
in China (ICCC)

244Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 12,2021 at 15:42:40 UTC from IEEE Xplore. Restrictions apply.

• In our MEC system, each UE can independently make

decisions consisting of offloading proportion of a task and

power allocation based on time-varying wireless channel

to minimize the sum cost.

• Based on DQN and DDPG, two DRL frameworks for

computation offloading have been designed, and each

UE is an agent that can learn the dynamic computation

offloading and resource allocation policies according to

each UE’s local observation.

• The numerical results show the sum cost of the proposed

algorithms is the lowest compared to other baselines

under a reasonable running time of making a policy.

The rest of this paper is organized as follows. In Section

II, the system model and the required parameter variables

are introduced. In Section III, the optimization problem and

two algorithms based on DDPG and DQN are formulated.

Simulation results are publicized in Section IV. Finally, we

conclude this paper in Section V.

II. SYSTEM MODEL

A. Network Model

Fig. 1. A typical communication model of MEC system.

Fig. 1 shows a typical communication model of MEC

system, which consists of one BS with N antennas and M
UEs. The set of UE is denoted by U = {1, 2, ...,M}, and

assuming that each UE m has one Dm-size task and the

completed task in each step is divided into two parts. The

αm represents the offloading proportion of task for each UE

m. The transmission power and local calculation power are

denoted by Po,m, Pl,m, respectively. B is defined as the

bandwidth of each UE. The calculation frequency allocated

to each UE by MEC server is a constant, which is denoted by

fs.

B. Computation Model

I) Local Computation Model: If local execution frequency

of UE m is defined as fl,m , the local execution delay is given

by:

Tl,m =
L(1− αm)Dm

fl,m
(1)

fl,m =
3

√
Pl,m

κ
(2)

where L represents the number of computing cycles required

to calculate one bit data, and κ is the effective switched

capacitance depending on the chip architecture. The energy

consumption of local execution for UE m can be expressed

as:

El,m = Pl,mTl,m (3)

The total cost of local computation model for UE m is given

by:

Cl,m = Tl,m + El,m (4)

II) Offloading Computation Model: Partial task is offloaded

to MEC server by BS, then MEC server executes task and

returns a result. We ignore the return delay since the size

of computation output is small compared with its input. The

transmission rate can be expressed as:

Rm = B log2(1 + Po,m ∗ IPNm) (5)

IPNm =
1

σ2
R

[(
HH(t)H(t)

)−1
]
mm

(6)

where IPNm denotes the interference-plus-noise of UE m
[8], the N × M channel matrix between M UEs and BS is

defined as H(t) = [h1(t), . . . ,hM (t)], [M]mm denotes as

the (m, m)-th element of matrix M, and hm(t) represents the

channel vector of UE m.

The total delay of offloading execution includes transmis-

sion delay and computation delay in MEC server, which is

denoted by:

To,m =
αmDm

Rm
+

LαmDm

fs
(7)

The energy consumption of offloading execution for UE m
can be written as:

Eo,m = Po,m
αmDm

Rm
(8)

The total cost of offloading computation model is given by:

Co,m = To,m + Eo,m (9)

Thus, the battery energy Bt of UE m can be obtained by:

Bt+1
m = min{max{Bt

m−(El,m+Eo,m)+etm, 0}, Bmax
m } (10)

where Bmax
m represents the maximum battery capacity of UE

m, and etm denotes the energy gain of UE m from surrounding

environment in step t, including solar radiation and electrified

wire netting.

Since the local and offloading executions are done si-

multaneously, the total execution delay cost should be the

maximum delay among the local computation and offloading

computation. Combining the above formulas, the sum cost of

2020 IEEE/CIC International Conference on Communications
in China (ICCC)

245Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 12,2021 at 15:42:40 UTC from IEEE Xplore. Restrictions apply.

executing one task for UE m in MEC system can be expressed

as:

Csum
m = ωmax{Tl,m, To,m}

+ (1− ω)(El,m + Eo,m) + δtm
(11)

where ω ∈ [0, 1] denotes the weighted parameter of execution

delay for UE m. The δtm denotes the penalty of the failed

execution for the task.

III. PROBLEM FORMULATION AND PROPOSED

APPROACHES

In this section, we formulate the execution issue of task

as minimizing the weighted sum cost of UE by optimizing

the task offloading and resource allocation policy. Since the

formulation is non-convex, it is hard to deal with the issue by

conventional algorithms. Thus we simplify the issue and pro-

pose two near-optimal task offloading and resource allocation

algorithms based on DQN and DDPG.

A. Problem Formulation

The optimization problem is formulated as:

P1 : min
αm,Pl,m,Po,m

Csum
m

s.t. C1 : αm, ω ∈ [0, 1]

C2 : 0 ≤ Pl,m, Po,m ≤ Pmax
m

C3 : 0 ≤ (El,m + Eo,m) ≤ Bmax
m (12)

where C2 indicates that the local execution power and the

transmission power can not exceed the maximum power of

Pmax
m . In order to minimize the task maximum execution delay

for UE m, we simplify (12). Since the local execution and

offloading execution are simultaneously performed, we have:

Tl,m = To,m (13)

where (13) indicates that when the local execution delay is

equal to the offloading execution delay, the max{Tl,m, To,m}
can obtain the minimum value. Furthermore, the relationship

between the optimal offloading proportion of task and the

optimal local execution frequency as well as the optimal

transmission rate can be written as:

αm =
LRmfs

LRmfs + LRmfl,m + fl,mfs
(14)

Thus, P1 is revised as:

P2 : min
Pl,m,Po,m

Csum
m = min

Pl,m,Po,m

{ωmax{Tl,m, To,m}
+ (1− ω)(El,m + Eo,m) + δt,m}

s.t. ω ∈ [0, 1], C2, C3 (15)

Problem 2 can be solved by finding out the optimal local

execution power and the optimal transmission power.

B. The Deep Reinforcement Learning Framework

Three key elements of DRL are as follows.

State: Each UE is an agent that can make decisions in-

dependently after training. We presume that the state of UE

is only determined by collecting local observation of MEC

system. Before forming a new state, the UE m will receive

the last IPNm from BS in step t, i.e., IPNm(t− 1), UE m
channel vector hm(t) of coming uplink transmission can be

estimated by channel correlation. Thus the state of UE m can

be written as sm,t = [IPNm(t− 1), hm(t)].
Action: The action of UE m includes Pl,m and Po,m which

can be selected according to current state sm,t. As a result,

the action of UE m is expressed as am,t = [Pl,m, Po,m].
Reward: The UE m will get a reward r(sm,t, am,t) after

executing one step where the UE m selects certain action am,t

to execute. In general, the reward is related to the objective

function. In order to learn the near-optimal task offloading

and resource allocation policy in our model, we refer to the

minimizing the weighted sum cost as the reward. Thus, the

reward of each step t can be denoted as rm,t = Csum
m .

C. Deep Q Network Approach

The DQN algorithm is originated from the Q-learning

algorithm which is a classical reinforcement algorithm. The

agent needs to calculate and store a Q-value in a Q-table

in executing each step for Q-learning, and each state-action

pair will have a corresponding Q-value. Thus the relationship

between reward r(s, a) and Q-value can be expressed as

Q(s, a) = r(s, a)+γ∗maxQ (s′, a′) . The difference between

DQN algorithm and Q-Learning is that DQN’s Q-value is

calculated not directly by the state-action pair but by a neural

network. Since the DQN algorithm does not have a Q-table to

store current all Q-values, the agent needs to use experience

replay method to update the action-value function. The pseudo

code of the task offloading and recourse allocation algorithm

based on DQN is shown in Algorithm 1.

D. Deep Deterministic Policy Gradient approach

Although DQN algorithm can solve the problem of high

dimensional state spaces, it is difficult to deal with high

dimensional and continuous action spaces. Thus we adopt the

DDPG to extend DRL algorithm to continuous action spaces.

Although DDPG algorithm borrows the idea of experience

replay and target network of DQN, it cannot directly adopt

the Q-learning framework since the greedy strategy of Q-

learning cannot be implemented simply and quickly in the

continuous action space. Therefore, the actor-critic algorithm

framework based on determining the action strategy is used by

DDPG. Different from DQN algorithm, which directly copies

parameters of the Q network to the target network periodically,

namely hard updates, DDPG adopts soft target updates to

ensure that the parameters can be updated slowly and improve

learning stability. The pseudo code of the task offloading and

recourse allocation algorithm based on DDPG is shown in

Algorithm 2.

2020 IEEE/CIC International Conference on Communications
in China (ICCC)

246Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 12,2021 at 15:42:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 The Task Offloading And Recourse Allocation

Algorithm based on DQN

for each UE m ∈ M do

Initialize experience replay buffer Dm as C
Initialize action-value function Q and target action-value

function Q′ with random weights θm, θ′m
for episode e = 1, 2, 3, · · ·, E do

Randomly initialize sm,1

for step t = 1, 2, 3, · · ·, T do

Select an action am,t with probability ε
otherwise am,t = argmaxaQ(sm,t, am; θm)
Execute action am,t and then calculate reward rm,t

and observe next state sm,t+1

Store (sm,t, am,t, rm,t, sm,t+1) in Dm

Sample a random mini-batch of

(sm,j , am,j , rm,j , sm,j+1) from Dm

Set ym,j ={
rm,j for t=T

rm,j + γm maxa′ Q′ (sm,j+1, a
′
m; θ′m) otherwise

Perform gradient descent on

(ym,j −Q(sm,j , am,j ; θm))2 with respect to θm
Update θ′m = θm

end for

end for

end for

IV. SIMULATION RESULTS

In this section, the performance of our proposed task

offloading and resources allocation algorithm is presented by

Python software. For comparison, we provide four baselines as

well: “Full Local” means that all of a task for UE is executed

in locally. “Full Offload” means that all of a task for UE

is offloaded to MEC server to execute. “Random Offload”

represents that the Pl,m and Po,m are random. “SA” means that

each UE obtain the optimal action to minimize the weighted

sum cost by adopting simulation annealing algorithm in each

step.

A. Parameters Setup

The energy harvesting follows the Poisson distribution. In

addition, B=3 MHz, fs=2 GHz, L=500, and Pmax
m =2 W.

For DQN, we adopt the neural network with four layers

namely input layer, output layer and two hidden layers, and

there are 400 and 300 neurons in the two hidden layers,

respectively. We assume the capacity of C = 100000 , the

mini-batch size is set as 60, and the learning rate is λ = 0.001.

For DDPG, the fully connected network with four layers

including input layer, output layer and two hidden layers are

adopted in the actor network and critic network. 400 and 300

neurons are selected in the two hidden layers, respectively.

The activation functions of two hidden layers utilize the

ReLu. The Sigmoid is used in the output layer to bound the

actions. Furthermore, the soft update rate is τ = 0.001, and

the temporal correlated noise adopts the Ornstein Uhlenbeck

process with σ = 0.12 and θ = 0.15.

Algorithm 2 The Task Offloading And Recourse Allocation

Algorithm based on DDPG

for each UE m ∈ M do

Initialize actor network μ(s|θμm) and critic network

Q(s, a|θQm) with θμm and θQm
Initialize actor-target networks μ′ and critic-target

networks Q′ with weights θμ
′

m ← θμm and θQ
′

m ← θQm
Initialize experience replay buffer Dm as C
for episode e = 1, 2, 3, · · ·, E do

Randomly generate a random process N for action

exploration

Randomly initialize state sm,1

for step t = 1, 2, 3, · · ·, T do

Select action am,t = μ(sm,t|θμm) +Nm,t by

running the current policy and using exploration

noise Nm,t

Execute action am,t and then calculate reward rm,t

and observe next state sm,t+1

Store (sm,t, am,t, rm,t, sm,t+1) in Dm

Sample a random mini-batch of

(sm,i, am,i, rm,i, sm,i+1) from Dm

Set ym,i =

rm,i + γmQ′
(
sm,i+1, μ

′
(
sm,i+1|θμ′

m

)
|θQ′

m

)
Update critic network by minimizing the loss:

L = 1
N

∑N
i

(
ym,i −Q

(
sm,i, am,i|θQm

))2
Update actor network by using the sampled policy

gradient:

∇θμ
m
J ≈ 1

N

∑N
i=1 ∇aQ

(
sm,i, a|θQm

)∣∣∣
a=am,i

∇θμ
m
μ (sm,i|θμm)

Update actor-target network and critic-target

network by θμ
′

m ← τθμm + (1− τ)θμ
′

m and

θQ
′

m ← τθQm + (1− τ)θQ
′

m

end for

end for

end for

B. Single User Equipment Scenario

In single UE scenario, the ω of the training and testing pro-

cess is successively set as 0.5 and 0.8, respectively. Assuming

the task size of training is 10 Mbits, and the task size of testing

is from 10 to 15 Mbits. 1000 episodes are used in training and

each episode consists of 200 steps. 200 episodes are used in

testing and each episode includes 100 steps.

As ω = 0.5, we can observe that the SA algorithm obtains

the best result of the sum cost in Fig. 2, and the result of

DDPG-based algorithm approximates the behavior of the SA.

This fact indicated the training network of DDPG need to be

well seated and trained. It can be seen from TABLE I that the

running time of the latter to make an action is only 2.5% of

the former, which means nearly 40 times quicker speed. The

reason why the DDPG-based algorithm has a fast action speed

compared to the SA algorithm is that the SA has to go through

multiple iterations to jump out of the local optimal solution

probabilistically and eventually obtain the global optimal solu-

tion, where the computation process is timeconsuming.Due to

2020 IEEE/CIC International Conference on Communications
in China (ICCC)

247Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 12,2021 at 15:42:40 UTC from IEEE Xplore. Restrictions apply.

the limited number of discrete action of DQN, the sum cost of

DQN-based algorithm is higher than that of the DDPG-based

and the SA algorithm. However, its running time of making

an action is only 2.8% of the SA, and it achieves nearly 38

times quicker speed compared with the SA. In Fig. 3, although

the DDPG-based algorithm does not have the best execution

delay, it slightly compromises in the execution delay to bring

about the second lowest energy consumption after the SA in

Fig. 4. Since the energy consumption for most of tasks for

“Full Local” is more than battery energy, the collected energy

is exhausted in each step so that the phenomenon of energy

consumption does not change in “Full Local” as shown in Fig.

4.

TABLE I
RUNNING TIME OF MAKING AN ACTION FOR UE.

ω SA DDPG DQN DDPG ÷ SA DQN ÷ SA
0.5 18.6ms 0.47ms 0.52ms 0.025 0.028
0.8 20.9ms 0.50ms 0.57ms 0.024 0.027

Fig. 2. The weighted sum cost for single UE with ω = 0.5.

Fig. 3. The execution delay for single UE with ω = 0.5.

When ω = 0.8, we can observe that the sum cost of

the DDPG-based algorithm still approximates the SA and

outperforms other baselines from Fig. 5. However, the running

time of the former to make an action is only 2.4% of the latter.

In Fig. 7, we can see that although the energy consumption of

DDPG and DQN at ω = 0.8 is greater than that of DDPG and

Fig. 4. The energy consumption for single UE with ω = 0.5.

DQN at ω = 0.5, the execution delays of DDPG and DQN

are both lower after the SA in Fig. 6. The reason is that the

execution delay of the sum cost will be given more penalty

at ω = 0.8. Moreover, although the gap between the energy

consumptions of DDPG and DQN at ω = 0.8 is narrower

than that of DDPG and DQN at ω = 0.5 in Fig. 7, the lowest

execution delay is achieved for the DDPG-based algorithm

under a reasonable running time in Fig. 6.

Fig. 5. The weighted sum cost for single UE with ω = 0.8.

Fig. 6. The execution delay for single UE with ω = 0.8.

C. Multi User Equipment Scenario

Since the running time of making an action for the SA is

too long and unable to meet requirements of MEC system, it

2020 IEEE/CIC International Conference on Communications
in China (ICCC)

248Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 12,2021 at 15:42:40 UTC from IEEE Xplore. Restrictions apply.

TABLE II
TESTING RESULT FOR MULTI UES WITH ω = 0.5.

Sum Cost Execution Delay(Unit: s) Energy Consumption(Unit: J)
UE 1 UE 2 UE 3 UE 1 UE 2 UE 3 UE 1 UE 2 UE 3

Pro DDPG 2.212 2.654 3.095 2.889 3.468 4.045 1.535 1.840 2.145
Pro DQN 2.530 3.132 3.708 2.574 3.261 3.713 2.485 3.003 3.702
Full Local 5.246 5.677 5.969 5.426 6.272 6.889 5.065 5.082 5.048

Random Offload 2.882 3.462 4.038 2.538 3.059 3.579 3.227 3.865 4.497
Full Offload 2.999 3.582 4.206 3.667 4.389 5.139 2.332 2.775 3.274

TABLE III
TESTING RESULT FOR MULTI UES WITH ω = 0.88.

Sum Cost Execution Delay(Unit: s) Energy Consumption(Unit: J)
UE 1 UE 2 UE 3 UE 1 UE 2 UE 3 UE 1 UE 2 UE 3

Pro DDPG 2.377 2.853 3.328 2.315 2.777 3.242 2.623 3.155 3.670
Pro DQN 2.504 2.996 3.521 2.348 2.741 3.297 3.125 4.019 4.416
Full Local 5.352 6.034 6.522 5.422 6.273 6.883 5.073 5.078 5.077

Random Offload 2.681 3.226 3.756 2.543 3.064 3.571 3.235 3.872 4.492
Full Offload 3.397 4.087 4.737 3.665 4.407 5.115 2.325 2.809 3.224

Fig. 7. The energy consumption for single UE with ω = 0.8.

is not considered in multiuser MEC scenario. Assuming three

UEs are located in MEC system, and the task sizes of testing

for three UEs are set as 10, 12, 14 Mbits, respectively.

When ω = 0.5, the sum cost of the DDPG-based algorithm

is the lowest compared to the DQN-based algorithm and three

baselines as shown in TABLE II. It can be observed that

the DDPG-based algorithm can achieve the lowest energy

consumption for all UEs by slightly compromising execution

delay.

If ω = 0.8, it can be seen from TABLE III that the execution

delay of DDPG for UE 1 and UE 3 are lower than DQN

and three baselines when more penalty is added to execution

delay. However, the UE 2 achieves the lowest execution

delay by using DQN-based algorithm, which indicates that the

exploration of DDPG needs to be improved further. In a word,

two strategies of the DDPG-based and DQN-based outperform

three baselines in the sum cost for all UEs.

V. CONCLUSION

In this paper, in order to minimize the weighted sum cost of

UE in MEC system, solve continuous behavior space problem,

and fully utilize the advantages of parallel computing between

the MEC server and UE, we propose the task offloading and

resource allocation algorithms based on DQN and DDPG,

which can allocate powers of local execution and that of

transmission adaptively, and then determine the offloading

proportion of task. It is performed in single UE and multi

UEs MEC systems, respectively. Numerical results show that

the performance of our proposed algorithms effectively reduce

the weighted sum cost of UE and outperform three baselines

except the SA.

ACKNOWLEDGMENT

This work was supported in part by National Natural

Science Foundation of China under Grant 60972037, in part

by Mobility Program for Taiwan Young Scientists under

Grant RW2019TW001, and in part by Shenzhen Science and

Technology Program under Grants GJHZ20180418190529516

and JSGG20180507183215520.

REFERENCES

[1] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1657C1681, 2017.

[2] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, pp. 1C1, 2019.

[3] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling, IEEE
Transactions on Communications, vol. 64, no. 10, pp. 4268C4282, 2016.

[4] J. Li and T. Lv, “Deep neural network based computational resource
allocation for mobile edge computing,” in Proc. 2018 IEEE Globecom
Workshops (GC Wkshps), pp. 1C6, 2018.

[5] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571C3584,
2017.

[6] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in Proc. 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1C6, 2016.

[7] W. Wu, Q. Yang, B. Li, and K. S. Kwak, “Adaptive resource allocation
algorithm of lyapunov optimization for time-varying wireless networks,”
IEEE Communications Letters, vol. 20, no. 5, pp. 934C937, 2016.

[8] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser mimo systems,” IEEE Transactions
on Communications, vol. 61, no. 4, pp. 1436C1449, 2013.

2020 IEEE/CIC International Conference on Communications
in China (ICCC)

249Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 12,2021 at 15:42:40 UTC from IEEE Xplore. Restrictions apply.

