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Abstract—With the accelerating pace of urban life, population
movements are changing dynamically in both space and time.
However, the ensuing traffic congestion and potentially danger-
ous problems caused by crowd flow and increasing uncertain
traffic data cannot be ignored. Crowd flow prediction is of critical
importance for reducing traffic congestion and eliminating public
safety risks in smart city. In this paper, we propose a Spatial
Temporal Long-and Short-Term Network (STLSN) model em-
ploying deep learning method to predict crowd flow in high
precision. The proposed STLSN considers both short and long
term temporal dependencies, and it employs local Convolution
Neural Network (CNN) to capture spatial correlations between
regions. Specifically, we employ the Long Short-Term Memory
(LSTM) to capture short term dependency while using recurrent-
skip architecture which utilizes the periodic characteristic of
flow data to capture the long term temporal dependencies.
Moreover, the weighting Point of Interest (POI) is applied
to differentiate the importance of function categories. Finally,
we conduct experiments on practical dataset and the results
demonstrate the effectiveness of our model is over the compared
methods.

Index Terms—crowd flow prediction, deep learning, LSTM,
smart city.

I. INTRODUCTION

Accurate crowd flow prediction can explore the characteris-
tics of urban residents’ activities, which can provide effective
decision-making support for the government and management
departments, rationally optimizing the allocation of public
service resources, providing early warning and dynamic traffic
guidance to improve citizens travel experience, and further
formulating emergency plans to eliminate public security
risks. The crowd flow prediction information can be shared
through the short-range communication by efficient vehicular
ad hoc network (VANET) communication [1].

Urban crowd flow prediction is a very challenging prob-
lem. Firstly, regional population flow data varies with time
and space, and thus the prediction model needs to capture
dependencies in both time and space dimensions [2]. At the
same time, it is also affected by many external factors, such
as temperature, events, weather and so on. Wu et al. [3]
considered weather, geo-tagged and collision records, which
well explains the traffic flow patterns. In recent years, the
developing computing and communication technology in big

data and artificial intelligence, particularly traditional machine
learning and deep learning, provide an opportunity to optimize
intelligent traffic systems, reducing traffic congestion and
reducing public safety risks [4][5].

Machine learning is used as the traditional method to
predict crowd flow. Dong et al. [6] combined wavelets and
XGBoost to predict short-term traffic flow, which weakens
the high frequency noise of traffic flow. Feng [7] used SVM
and multi-kernal computing to model the short term traffic
flow adaptively. But they cannot model the traffic flow’s
complex non-linear correlations enough and their computing
capabilities are not enough to train the huge amount of
traffic data. Lately, N.G. et al. [8] employed neural network
to model non-linear relationships and introduced a simple
linear Vector Auto Regressive (VAR) to catch sample spatio-
temporal hierarchically. Zhang et al. [9] proposed a ST-ResNet
model to predict urban crowd flow by using Convolution
Neural Network (CNN) to capture the spatial dependency of
each region. DMVST [10] was proposed to capture temporal
dependency through using Long Short-Term Memory (LST-
M), while the spatial correlations are handled by local CNN.

However, these existing works have their limitations. First-
ly, few of studies take region semantic function which is
represented by Point of Interest (POI) into consideration. The
traveling to a certain place often relies on the functions of
the destination [11]. For example, people usually leave home
for the office in the morning and go home from office in
the evening. Secondly, few of existing studies consider short-
term and long-term temporal relations simultaneously. ST-
ResNet [9] splits the historical data into three different time
periods, but it doesn’t explicitly model the complex tempo-
ral dependency. DMVST captures the temporal correlations
using LSTM, however, it overlooks the long-term temporal
dependency.

In this paper, to address above issues, we propose a deep
learning model for crowd flow prediction, namely, Spatial-
Temporal Long- and Short-Term Network (STLSN). The
model’s spatial and temporal features are handled by local
CNN [10] and LSTM respectively. We regard each categories’
importance of POI in a certain region as the weight of
corresponding POI distribution and embed them into network,
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so that to capture semantic features. Additionally, the external
influence factors are also taken into consideration. Then the
fusion of semantic features, spatial features, and external
features is input to recurrent layer to catch the temporal
correlations. In the temporal component, recurrent-skip [12]
architecture is employed to capture very long-term depen-
dency by the method of making full use of the periodic
characteristic of crowd flow data. Our contributions can be
summarized as follows:
• We design a semantic component which considers the

effect of POI and computes every category’s importance
of POI in a region as the weight of POI distribution. The
designation of self-weighted POI distribution can mea-
sure the semantic effect for crowd flow more preciously.

• We propose to use LSTM and recurrent-skip layer in
temporal component. This component can capture the
short-term and very long-term dependencies jointly.

• We simulate prediction experiments on the practical
public dataset with several baselines. Compared with
other baselines, the results show that our method has
higher accurate.

The rest of this paper is organized as follows. Section II
describes the problem definition and some notations. Section
III describes the structure of our proposed STLSN model in
detail. We discuss and analyze the performance in section IV.
Finally, section V concludes the paper.

II. PRELIMINARY

In this section, we briefly introduce the crowd flow pre-
diction and revisit the previous study ST-ResNet[9] to define
some notations.

Definition 1 (Region) We regard the whole city as an
image and split it into I×J squares according to latitude and
longitude, where each grid has the same size and represents
a region. The region can be located by the index (i, j) which
represent the ith row and jth column. We define the region
set as R = (r1, r2, . . . , rJ×I)

Definition 2 (Inflow/Outflow) The definitions of inflow and
outflow in area (i, j) at tth time interval are as follows :

xi,j,int =
∑
Tr∈C

|{k > 1|gk−1 /∈ (i, j) ∧ gk ∈ (i, j)}| (1)

xi,j,out
t =

∑
Tr∈C

|{k >= 1|gk /∈ (i, j) ∧ gk+1 /∈ (i, j)}| (2)

where C represents the set of trajectories at tth time slot.
Tr : g1 → g2 → . . .→ g|Tr| is a trajectory in C, gk represents
the geographical coordinates; gk ∈ (i, j) means that gk is
located in square (i, j);

For a region r ∈ R with index of (i, j). The inflow and
outflow data at tth time slot of region r can be expressed as
Xr
t ∈ RI×J×2, where (Xr

t )0 = xi,j,int , (Xr
t )1 = xi,j,out

t .
Problem 1(Crowd Flow Prediction) Given the historical

observations {xrt |t = t− d+ 1, . . . , t} until time slot
t, we aim to predict the flows Xr

t+1 at t + 1 slot.
So our problem is formulated as follows: Xr

t+1 =

λ̂
(
Xr
t−d+1,X

r
t−d+2, . . . ,X

r
t , εt−d+1, εt−d+2, . . . , εt)

Where εt−d+1, εt−d+2, · · · , εt are the relation factors in
each region. λ̂(·) is a prediction function.

III. STLSN ARCHITECTURE

In our model, we first fuse the weighted POI and external
features with spatial features, then we feed the fusion features
into recurrent component to catch the temporal dependencies.
Finally, we get the prediction output contains multi influence
factors. Figure 1 shows the architecture of our model. It
mainly consists of three components, spatial and semantic
fusion component, short-term temporal component and long-
term temporal component.

A. Spatial and Semantic Fusion Component

There are three elements in spatial and semantic fusion
component of STLSN architecture. The specific functions are
introduced in the following subsections.

1) Spatial Dependency Component: We use local CNN
to take operations on the target region and its surrounding
neighborhood, which captures the local spatial dependency.
We regard the adjacent area of target region r and r as an
S × S map with two channels including inflow and outflow.
We suppose that the data are observed from time t − d + 1

to t (i.e.,
{(
xr,int , xr,out

t

)
|t = t− d+ 1, . . . , t

}
). As a result,

we get totally 2d flow image and concatenate them as Xr
t ∈

RS×S×2d. Then, the local CNN with K convolutional layers
takes Xr

t as input Xr,0
t , and the computation of convolution

at each layer k as follows:

Xr,k
t = f

(
Xr,k−1
t ∗W k

t + bkt

)
(3)

where W k
t and bkt are learned parameters in the kth con-

volutional layer, ∗ indicates the convolutional operation, and
f(x) = max(x, 0) is rectifier activation function.

After K convolution layers, we use a fully connected layer
to reduce the dimension of spatial features from Xr,k

t ∈
RS×S×λ to a feature vector Srt ∈ RS2λ where λ is the
number of convolution kernels. So, we get the spatial feature
representation Srspa =

[
Srt−d+1, S

r
t−d+2, . . . , S

r
t

]
, where Srt is

the representation in region r at time interval t.
2) Semantic Features of Weighted POI: The destinations of

people’s travel always have specific functions, of which types
are residences, working places, shopping malls etc represented
by POI. In other words, POI as a significant factor affects
crowd flow. We also treat the POI distribution is an N-
channel matrix Poi ∈ RS×S×N , each channel denotes one
type of POI. S is the width of the city map, N is the total
categories of POI. In order to differentiate the effect degree
of different categories of POI in a region, we need to evaluate
the importance of a specific POI in the region units. We
utilize the term frequency-inverse document frequency (TF-
IDF) which is designed to measure the importance of a word
in a document in Natural Language Processing field. In our
problem, a target region unit r ∈ R, where R is the collection
of all regional units. The TF term of the ith POI type in region
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Fig. 1: The Architecture of STLSN. (a)Semantic, spatial and external fusion component. The early fusion of captured features
is input to the next temporal component. (b) The short-term temporal capture component is composed of LSTM. (c) The
long-term temporal capture component is composed of GRU-based recurrent-skip layer. (d) The final output layer fuses the
long-term and short-term dependencies and outputs the predicted flow at t+1 time interval.

r is defined as: TF ri =
pri∑N
i=1 p

r
i

. Where pri denotes the type

of ith POI in region r. The IDF terms of the ith POI type in
region r is defined as: IDF ri = log R

|ri| . |ri| is the number of
ith category in region r. Then the TF-IDF value of the ith

POI type in region r is: TF -IDF ri = TF ri · IDF ri . We use
the value of TF-IDF as the weight of POI distribution map.
The weighted POI distribution of ith type are computed as:
wPi = TF -IDFi ∗ pi. Where wPi is 1-channel matrix which
represents the ith POI type weighted by its corresponding TF-
IDF value. ∗ denotes the element-wise product, pi denotes
the ith channel of POI distribution matrix. We concatenate
N channels matrix together as the weighted POI distribution:
wP =

∑N
i=1 wPi. Similar to the extraction of spatial features,

we also apply local CNN to capture the correlations of target
regions POI with its near regions. And through fully connected
layer to reduce the dimension. Finally, we get the weighted
POI features ti.

3) External features: We stack fully connected layers to
embed external features and increase the dimension. The
output of external component denotes as ert . Finally, we
early fuse the spatial features, semantic features, and external
features before input to the next temporal component. The
fusion result denotes as:

grt = Srspa ⊕ ti⊕ ert (4)

B. Short and Long Term Temporal Component

The features captured from above components are not static.
In order to catch the temporal dependency, we use LSTM
network as our choice. We consider ω time slots in a day, the
output feature hrt at t time slot is processed as follows:

hrs,t = LSTM
(
grt , h

r
t−1
)

(5)

Then we get the short-term temporal information hrs,t = hrt .
However, above LSTM component only takes short time

intervals into consideration. LSTM usually hard to catch long
term dependency due to gradient vanishing. If we predict the
crowd flow at t time slot (e.g. 9:00am to 9:30am) for a day,
besides most recent records, the leverage of historical days
records at the same time slot is also important. In order to
solve this issue, we use recurrent-skip layer which extends
temporal span of information pass and eases the optimization
process through adjacent period links. The updating process
described as follows:

hrt = GRU
(
grt , h

r
t−p
)

(6)

where the input of this layer is grt , p is the skip length or
the period length of the dataset.

The d hidden states express as hrt−d+1, h
r
t−d+2, . . . , h

r
t due

to the flow happens from time t−d+1 to t. Then, we get the
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long-term periodic information through dense layer which is
expressed as follows:

hrl,t =

t−d−1∑
i=0

W r
i h

r
i−p + b (7)

Finally, we concatenate the short-term information hrs,t,
long-term information hrl,t:

hro,t = hrs,t ⊕ hrl,t (8)

Then we feed hio,t to a fully connected layer to get the final
prediction of inflow and outflow for region r at time interval
t + 1, which is denoted as Xi

in,t and Xi
o,t respectively. The

final operation is defined as:

Xr
t+1 =

[
Xr
in,t+1, X

r
o,t+1

]
= tanh

(
W r
o h

r
o,t + bro,t

)
(9)

where W r
o and bro,t are learned parameters.

C. Objective Function of STLSN Architecture

`(θ) =
n∑
ξ=1

η
(
Xξ
t+1 − X̂ξ

t+1

)2
(10)

where θ is a collection of all parameters in this network, ξ
is the total number of data samples. We use TensorFlow and
Keras to implement our model and choose Adam to optimize
the training process.

D. The Training Process of STLSN Architecture

The training process of STLSN is shown in Algorithm 1.
We build training examples based on the original sequence
of the crowd flow maps and POI distributions (lines 1-11),
including Sspa, hrs,t, h

r
l,t, represent the local spatial features,

short-term temporal features, long-term temporal features re-
spectively.

IV. EXPERIMENTS

In this section, we introduce dataset and contrast baselines.
In addition, we outline the evaluation metrics and parameter
settings of the model. Finally, we discuss the performance of
the model.

A. Dataset

We use the public practical dataset BikeNYC which con-
tains trajectories and weather. The collection of POI types for
this dataset is 9. They are Food, Residence, ShopServic, Col-
lege, NightlifeSpot, TravelTransport, ArtEntertainment, Pro-
fessionalOtherPlace, OutdoorsRecreation. This dataset is the
Bike rent information that happened in 2014, from Apr.1st to
Sept. 30th in New York City. The data of the past 14 days
was used as testing data and the remaining data as training
data.

Algorithm 1 STLSN Training Procedure

Input: Historical data: {X r0 . . .X rn}; Time interval
vector: {t− d+ 1, . . . , t}; External features:
ert−d+1,...,t; POI distribution: Poi.

Output: Learned STLSN model
1: Ω← ∅
2: compute the weighted POI distribution ti.
3: for ∀r ∈ R do
4: for all available time slot {t− d+ 1, . . . , t} do
5: Sspa =

[
Xr
t−d+1, X

r
t−d+2, . . . , X

r
t

]
6: hs =

[
hrs,t−d+1, h

r
s,t−d+2, . . . , h

r
s,t

]
7: hl =

[
hrl,t−d+1, h

r
l,t−d+2, . . . , h

r
l,t

]
8: put training instance
9:

({
Sspa, h

r
s,t, h

r
l,t, ti, e

r
t

}
, Xr

t+1

)
into Ω;

10: end for
11: end for
12: initialize all learnable parameters θ in STLSN;
13: repeat
14: select a batch of instances Ωi from Ω randomly
15: optimize θ by minimizing objective function
16: using Adam and Ω;
17: until meet the stop criteria;

B. Baselines

We compare our STLSN model with the following base-
lines:

HA: It predicts flows of crowd by the average value of
historical data.

ARIMA: Auto-Regressive Integrated Moving Average
(ARIMA) is a classical method that combines moving average
and autoregressive components for modeling time series.

VAR: Vector Auto-Regressive (VAR) is a traditional tem-
poral modeling method which can capture the multiple rela-
tionships among several flow time series.

ConvLSTM [13]: It is a combination of CNN and LSTM,
who takes spatial and temporal influences into consideration.

ST-ResNet [9]: It is a novel spatial-temporal neural network
based on CNN only.

C. Metrics

We use two metrics as the evaluation of our model, they
are Rooted Mean Square Error (RMSE) and Mean Average
Percentage Error (MAPE) which are defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(
X̂r
t+1 −Xr

t+1

)2
(11)

MAPE =
1

n

n∑
i=1

∣∣∣X̂r
t+1 −Xr

t+1

∣∣∣
Xr
t+1

(12)

where n is the quantity of all samples, X̂
i

t+1, Xi
t+1 represent

the real value and prediction value of region r at time slot t+1
respectively.
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TABLE I: Performance and Comparison of different methods

Method RMSE MAPE

Historical average 13.10 28.04%

ARIMA 11.74 26.34%

VAR 12.16 27.41%

XGBoost 9.83 23.25%

ConvLSTM 10.27 24.14%

ST-ResNet 9.67 24.06%

STLSN 9.43 21.67%

D. Parameters and Settings

The span of each time slot is 30 minutes. We normalized
the inflow and outflow values for all regions to [0,1] by using
Min-Max normalization method. As the output values of our
model in the range of [0,1], we denormalize the values and
use it for evaluation. Due to the discrete of external features,
one-hot encoding is applied to convert into vector.

We split 80% of the dataset as a training set, and the
remaining 20% as validation set. For near spatial component,
the size of each neighborhood considered is set as 7× 7 (i.e.,
S=7). Additionally, we set K = 3 (the number of convolution
layers), convolution kernel size to 3 × 3, λ = 64 (number
of kernels), α = 64 (the dimension of output). For temporal
component, we set κ = 7 (i.e., previous 3.5 hours) for short-
term LSTM, σ = 3 (i.e., previous 3 days) for long-term GRU,
p = 24 (i.e., the skip length is 24 hours). The dimension of
hidden output of LSTM is 128. The batch size in training
process is set as 64.
E. Performance and Comparison

Table I shows the performances of our model and baselines.
Our proposed model STLSN has the lowest values of RMSE
and MAPE compared with above baselines. The traditional
time series prediction methods such as HA, ARIMA perform
not well. Because they only depend on the historical data
of prediction value and ignore spatial and other semantic
features. VAR also ignores the relevant features except the
predicting value itself, which leads to bad performance. The
XGBoost achieves better performance compared with tradi-
tional methods, due to its optimization train process. For
deep learning methods, ConvLSTM integrates convolutional
operation with LSTM units to capture both spatial and tem-
poral information. ST-ResNet uses CNN to capture spatial
information in closeness, period and trend, but overlook the
temporal sequential dependency. Our model not only consider-
s the nonlinear temporal dependencies and spatial features but
also semantic and external information, so that it outperforms
these baselines.
F. Effectiveness of semantic and long-term temporal compo-
nent

We define the variants of STLSN model to study the
effectiveness of each component.

BaseST: this variant consists of spatial component and
short-term temporal component only.

BaseST + POI: In this variant, we concatenate the POI
distribution which is only the distribution indicator without
weight and spatial representation. Then we feed it into LSTM
as semantic spatial features to catch temporal dependency.

BaseST + wPOI(weighted POI): In this variant, POI
distribution is mapped into weights by TF-IDF regular. We
concatenate the weighted POI distribution with spatial repre-
sentation. Then we feed it into LSTM.

BaseST + LT(long-term temporal component): In this
variant, the spatial representation is put into LSTM and
Recurrent-skip layer to catch short-term temporal dependency
and long-term dependency respectively.

STLSN: Our proposed model, which consist of spatial,
semantic, external, long and short term components.

(a)

(b)

Fig. 2: (a) RMSE with respect to the effect of semantic
component. (b) MAPE with respect to the effect of semantic
component.

Figure 2 and 3 show the performances of STLSN and
its variants. BaseST + POI and BaseST + weighted POI
outperform BaseST, because BaseST overlooks the semantic
influence of human mobility. Additionally, Base + weighted
POI has lower RMSE and MAPE, because it computes the
proportion of each type of POI in a region. The comparison
result proves the effectiveness of considering the importance
of each POI in a region. The BaseST + LT performs better than
BaseST, because BaseST overlooks the long term dependency.
The proposed model STLSN outperforms all its variants,
which demonstrates the effectiveness of considering semantic
and long term temporal correlation factors.
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(a)

(b)

Fig. 3: (a) RMSE with respect to the effect of long term
component. (b) MAPE with respect to the effect of long term
component.

V. CONCLUSION AND DISCUSSION

We have proposed an STLSN model for crowd flow predic-
tion in a city, which achieves long term temporal dependency
and takes the effect of semantic attributes into consideration,
and combined them properly. The STLSN model is mainly
composed of local CNN, LSTM, and GRU. We have con-
ducted our experiment on a large-scale practical dataset. The
experiment results have shown that the performance of STLSN
model is significantly better than several baselines, which
confirms the effectiveness of our model. In the future, we
will focus on the question that how to predict the flow in a
fine-grained region with higher accuracy.
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