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Abstract—With the improvement of mobile computing capa-
bility, the service demands of user terminals are also increasing.
Therefore, task offloading in mobile edge computing (MEC) has
always been a research focus. However, most of task offloading
schemes are confined to current network paradigms. During the
shaping of 6G, it is of value to explore novel task offloading ar-
chitectures and methods which fit future communication system.
In this paper, we present a cybertwin-based system that allows
flexible resource deployment and coordination. In addition, by
targeting at the graph structure of this system, we propose an
energy-efficient and security-enhanced partial-offloading scheme
based on a combination of deep reinforcement learning (DRL)
and modified graph attention network (GAT). Numerical results
demonstrate that the proposed training method converges better
and the trained GAT model achieves utility improvement.

Index Terms—Cybertwin, partial offloading, GAT, twin de-
layed deep deterministic policy gradient (TD3)

I. INTRODUCTION

As the commercialized 5G and its related technologies

mature gradually, the activities to shape the next genera-

tion of wireless communication are initiated worldwide and

6G is outlined as “hyper-connected experience for all” [1].

Facilitated by the advancement of mobile communication,

prospering artificial intelligence (AI) has proliferated smart

devices and sophisticated applications. However, there remains

mismatch between rigid requirements of these applications and

limited computing capability of user devices. Therefore, task

offloading should always be available for compute-intensive

services.

Mobile edge computing (MEC) was brought up to alleviate

or resolve congestion caused by huge data swarming into core

networks when assuring satisfactory quality of service (QoS).

As edge intelligence emerges and more edge infrastructures

are deployed for wireless services, MEC-based frameworks

[2]–[4] are discussed and investigated in the past decade. A

pure MEC-based network consisting of one energy-harvesting-

enabled IoT device and multiple edge devices was investi-

gated in [2]. However, the single-user-centric system does

not coincide with the common case that is both multi-user

and multi-edge. In addition, this scheme omitted transmission

delay and energy consumption of downlink, which is less

preferred when considering non-negligible downlink delay

or greener objectives. Edge-cloud collaboration architectures

were proposed in [3], [4], where tasks could be partially

processed at edge nodes and partially offloaded to the cloud via

wired links or backhaul links. However, the two architectures

neglected that smart vehicles or users are capable of processing

some tasks locally, which can be more cost-efficient.

In respect to existing offloading architectures, two key

challenges to be resolved are as follows:

• Cloud-centric architectures are reasonable for cloud’s

powerful capability, but a part of offloading benefit in

these architectures is usually offset by communication

cost. As user terminal becomes smarter, end-edge-cloud

orchestration mechanism is worth investigating.

• Most existing frameworks are confined to the current

network architecture. However, if 6G wants to work for

Internet of Everything (IoE) with capability increase by

a factor of 10-100 [5] and better energy efficiency, new

network architectures are needed [6].

Various reinforcement learning (RL)-based algorithms [7]–

[9] that aimed at allocating resource and making task offload-

ing decisions were also investigated. Huang et al. proposed

a power management scheme based on double Q-learning to

realize dynamic voltage and frequency scaling (DVFS) [7].

To optimize the combined utility of the mobile device, a task

offloading algorithm based on deep Q-network and actor-critic

framework was proposed [8]. Targeting at continuous task

offloading control, Ke et al. proposed an adaptive computation

offloading method based on deep deterministic policy gradi-

ent (DDPG) to minimize the utility of energy consumption,

transmission delay and allocated bandwidth [9]. Nonetheless,

many deep reinforcement learning (DRL)-based algorithms are

confined to deep neural network (DNN) and convolutional

neural network (CNN), without considering the graph structure

of task offloading data.

In this paper, the performance of task offloading algorithms

is improved by better extracting features from original data,

and a novel DRL-based scheme is proposed. The main con-
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tributions are summarized as follows:

• We propose an end-edge-cloud orchestration system with

cybertwin components and a scheduling center. It is a

flexible, cache-considered, security-enhanced and energy-

efficient framework that supports simultaneous partial

offloading of multi-task.

• To improve the performance of current DRL-based task

offloading algorithms, we take the graph structure of the

scenario into consideration and combine the twin delayed

DDPG (TD3) framework and the modified graph attention

network (GAT).

• Comparing with other baseline algorithms and strategies,

we show that the proposed method achieves performance

boost.

The remainder of this paper is organized as follows. The

system model is elaborated in section II and the objective

function is formulated in section III. Then, a novel DRL-

based algorithm integrated with GAT is proposed in section

IV. Numerical results are analyzed in section V and followed

by a conclusion.

II. SYSTEM MODEL

To fit for future communication system, our system is built

on top of the main framework in [6]. But our system is

customized with features that suit centralized task offloading

problem, such as a scheduling center, cloud resource partition

and cache-offloading-combined mechanism, and details that

are needed for task offloading to work out, including compo-

nents of edge nodes and data flow.

As shown in Fig. 1, this is a hierarchical system consisting

of service layer, edge layer and cloud layer. The bottom is

where services are requested and implemented. It is a set of

mobile users and denoted as U = {1, 2, ..., N}. The edge layer

and the cloud layer are two intertwined but different layers.

In the edge layer, each edge node is a pack of equipment,

including but not confined to base stations (BS), edge servers,

cameras, road side units (RSU), biometric readers, bar-code or

QR-code scanners. Edge nodes are local and densely deployed.

Their role is to collect environment information and provide

task offloading assistance in three ways. First, an edge node is

a host of cybertwins [6] who work as facilitators and windows

to handle offloading requests and deliver services to users. Sec-

ond, establishing connections between users and cybertwins

may have to go through identification and verification process,

and the two functions are realized by biometric readers, facial

recognition devices or other implements equipped in edge

nodes. Third, light servers deployed in edge nodes can support

some task offloading. The top layer contains a scheduling

center and clusters of multiple regional clouds. The scheduling

center collects task information from multiple cybertwins and

issues instructions on how to offload tasks and how to allocate

resources. Regional clouds are equipped with big databases

and powerful servers. Entities in the edge layer and the cloud

layer comprise a set of servers S = {1, 2, ...,M}.

Fig. 1. Network model.

Since the wireless communication coverage of some edge

nodes are overlapped, several cybertwins are available to one

user. When a user broadcasts its offloading request to nearby

cybertwins, those cybertwins reply with current channel state

information (CSI) and potentially, verification requests. The

user automatically selects one cybertwin according to best

transmission rate or other preference settings. If the user is

verified, the cybertwin will forward the task information to the

scheduling center. Based on instructions from the scheduling

center, the user offloads its task to the designated server and

receives task results through its cybertwin. Advantages of this

system are as follows:

• Cloud Resource Partition: Different regional clouds store

contents for disparate services and such partitioning al-

lows flexible infrastructure deployment based on network

throughput or QoS requirements. In addition, different

clusters of regional clouds are resource centers for d-

ifferent regions and hence we assume no direct wired

connection between different clusters.

• Multiple but Restrained Resource Accesses: Some edge

nodes are wired-connected due to vicinity or other re-

quirements. Additionally, each edge node is connected

to some but not all regional clouds, which ensures stable

resource sharing within a certain area and avoids unneces-

sary trans-area content sharing. Nevertheless, a cybertwin

has access to multiple resources.

• Cache-Offloading-Combined Mechanism: When servers

in regional clouds or edge nodes have access to the data

necessary for tasks from users, these users will be spared

from uploading, namely the time and energy cost of

uploading data.

• Enhanced Security: A cybertwin will require verification

if there is a new connection request or a reconnection

request after a certain time span. The length of the time

span depends on users’ category and trust level. By

shunning unverified users, security is enhanced and more

resource is reserved for valid tasks.
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III. PROBLEM FORMULATION

A task is featured by task size L, computing density D,

ratio of input to output ϑ and maximum tolerable delay Tmax.

By introducing D and ϑ, the system implicitly takes multiple

task types into consideration. The offloading proportion of

user n to server m is introduced to divide tasks into local

computing part and offloading computing part, and denoted

as αn,m. Offloading proportion and server selection comprise

offloading decision, and server selection is given by

[on,m] =

{

1, if on,m = m

0, otherwise
(1)

Therefore, local computing delay of task n is given by

T (l)
n =

(1− αn,m [on,m])LnDn

f
(l)
n

(2)

where f
(l)
n is computing capability of user n. Similarly,

computing delay of task n in server m is denoted as

T (r)
n,m =

αn,m [on,m]LnDn

f
(r)
m,n

(3)

where f
(r)
m,n is the computing resource that server m allocates

to user n. Servers of this system are virtual-machine-enabled,

so multiple tasks can be processed in parallel. It is assumed

that resource in each server is averaged among all arriving

tasks and queuing is not considered.

Since completely decoupled uplink and downlink are con-

sidered, there are uplink bandwith W
(u)
n , uplink SINR γ

(u)
n ,

downlink bandwidth W
(d)
n and downlink SINR γ

(d)
n . Accord-

ingly, the uplink rate r
(u)
n and downlink rate r

(d)
n between user

n and its cybertwin are given by

r(u)n = W (u)
n log2

(

1 + γ(u)
n

)

(4)

r(d)n = W (d)
n log2

(

1 + γ(d)
n

)

(5)

Correspondingly, the uplink delay is denoted as

T (u)
n =

ηnαn,m [on,m]Ln

r
(u)
n

(6)

where ηn = 0 indicates that content required for this task

is already cached and can be accessed by available servers.

But unlike many researches that ignored the delay of results

delivery, we consider the downlink delay:

T (d)
n =

ϑnαn,m [on,m]Ln

r
(d)
n

(7)

Therefore, the total delay of task n is calculated by

Tn = max
(

T (l)
n , T (u)

n + T (r)
n,m + T (d)

n

)

(8)

and the energy consumption of task n is given by

En = P (l)
n T (l)

n + P (u)
n T (u)

n + P (r)
m T (r)

n,m + P (d)
n T (d)

n (9)

where P
(l)
n , P

(u)
n and P

(d)
n represent the local computing pow-

er, uplink transmission power, downlink transmission power of

user n, respectively; and P
(r)
m denotes the computing power

of server m. P
(l)
n is given by

P (l)
n = κ ·

(

f (l)
n

)3

(10)

where κ is a capacitance coefficient and set as 10−28 according

to [8].

A trade-off between delay and energy consumption is a

rational objective to optimize. However, unlike researches that

optimized delay or energy consumption directly, we target at

delay efficiency and energy consumption efficiency, because

task size and computing density may vary over a large range.

Moreover, we consider different types of upper bound in two

efficiency terms. The maximum tolerable delay Tmax is used

in delay efficiency, and the energy consumption of complete

local computing is employed in energy consumption efficiency.

The utility function is defined as

U =
1

N

∑

n∈U,m∈S

ω
ρn(Tmax − Tn)

Tmax
+ (1− ω)

ξn(EAL,n − En)

EAL,n

ρn = 0 if Tn > Tmax

ξn = 0 if En > EAL,n

(11)

where ω signifies a trade-off coefficient between delay cost

and energy cost; EAL,n represents the energy consumption

when task n is computed completely in local; ρn and ξn are

timeout indicator and excessive energy consumption indicator

of task n, respectively. The problem is thus formulated as:

max
αn,m, on,m

U (12)

IV. DRL-BASED TASK OFFLOADING ALGORITHMS

A. The Proposed DRL-based Approach

To solve the formulated problem (12), we propose a dynam-

ic task offloading algorithm based on DRL framework. RL is

to maximize cumulative rewards through continual interactions

between agent and environment, and the interacting process

includes five basic components: state, action, reward, return

and Q-function.

At time step t, the state of the environment, denoted by

st, includes task size L(t), computing density D(t), ratio

of input to output ϑ(t), local computing capacity f (l)(t),
remote computing resource f (r)(t), uplink rate r(u)(t), uplink

transmission power P (u)(t), downlink rate r(d)(t), downlink

transmission power P (d)(t), local computing power P (l)(t),
computing power of remote servers P (r)(t), cache indicator

η(t), and a list of available servers A(t).

The action at corresponds to on,m(t) and αn,m(t), namely

which server and at what proportion to offload.

After performing the action at, the environment transfers to

a new state st+1 and returns an immediate reward r(st, at). We

define this reward as the utility r(st, at) = U(t) and the return
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as the discounted sum of rewards Rt =
∑T

i=t ζ
i−tr(st, at),

where ζ is a discount factor that determines the importance of

future rewards.

In RL, Q-function or value function is the expected re-

turn when performing action a according to policy π for

the given state s, which is Qπ(s, a) = E[Rt|s, a]. Many RL

approaches learns based on Bellman equation which can be

transformed to Qµ(st, at) = E[r(st, at) + ζQµ(st+1, at+1)]
in TD3 [12]. Specifically, µ is a function approximator pa-

rameterized by θ. So the value function Qθ is learned by

minimizing the loss L(θQ) = E[(Q(st, at|θ
Q)− yt)

2
], where

y(t) = r(st, at) + ζQ(st+1, µ(st+1)|θ
Q). The complete pro-

cess of TD3 specified in Algorithm 1.

B. The Modified Graph Attention Network

Many existing DRL-based task offloading algorithms

choose DNN or CNN as their network structures. The un-

derlying data representation of DNN is sequence and that

of CNN is grid-like structure. However, the data in task

offloading scenario presents graph structure and using graph

neural network may achieve further performance boost.

A task offloading system can be modelled by a graph

featuring nodes (users and servers) and edges (relations be-

tween each user and each server). Specifically, each user is

represented by a feature vector while each server is represented

by another feature vector. Their relations, namely whether one

server is available to one user, are expressed by an adjacency

matrix J = (jnm) ∈ R
N×M . For example, jnm = 1 indicates

that server m is available to user n, or in other words, server

m is a neighbor of user n. The aforementioned state st is thus

re-categorized into three types:

• user features: {L(t), D(t), ϑ(t), f (l)(t), P (l)(t), r(u)(t),
r(d)(t), P (u)(t)};

• server features: {f (r)(t), P (r)(t), P (d)(t)};
• relations between users and servers: J(t)

Among various types of graph neural networks, we choose

GAT for its simple implementation and leave other sophisti-

cated ones for future exploration. The key idea of a standard

GAT layer is extracting implicit features of nodes to form

the corresponding representations. The standard GAT layer is

portrayed as Fig. 2(a) and it includes three parts:

• Map the original features of every node (user and server)

into a new feature space and obtain hidden features;

• Aggregate the hidden features of user n with that of

server m, where m ∈ Nn is a neighbor of user n; feed the

aggregation into a softmax function to obtain an attention

coefficient that indicates the importance of server m to

user n;

• Linearly combine these attention coefficients with the

corresponding hidden features to get output features.

Since our objective is to select the most important neighbor

rather than extract senior representation, we remove the linear

combination of the third part. The new layer is named as

(a) Standard GAT Layer

(b) Modified GAT Layer

Fig. 2. Standard GAT layer and modified GAT layer.

modified GAT layer and depicted in Fig. 2(b). Be noted

that multi-head attention mechanism used in [11] is also

implemented in our approach. Further, unlike the standard

GAT network that consists of two standard GAT layers, our

modified GAT network is constructed by one standard GAT

layer and one modified GAT layer. The actor network and

the target actor network in our algorithm are modified GAT

networks. The critic networks and target critic networks are

also based on the modified GAT network, but each of them

concatenates one more fully-connected layer.

Algorithm 1: GAT-TD3-based Task Offloading Algorithm

Randomly initialize critic networks Qθ1 , Qθ2 and actor

network πφ

Initialize target critic networks Qθ′

1
← Qθ1 , Qθ′

2
← Qθ2

Initialize target actor network πφ′ ← πφ

for t ∈ T do

For st, select an action at ← πφ(st) + ǫ1, ǫ1 ∼ N (0, σ)
Observe reward rt and new state st+1

Store transition [st, at, rt, st+1] in replay buffer B
Sample K transitions [st, at, rt, st+1] from B
a′t+1 ← πφ′(st+1) + ǫ2, ǫ2 ∼ clip(N (0, σ′), 0, c)
y ← rt + γminz=1,2 Qθ′

z
(st+1, a

′

t+1)
Update critics θz ← argminθ′

z

1
K

∑

(y −Qθz (st, at))
2

if t mod d then

Update φ by deterministic policy gradient:

∇φJ(φ) =
1
K

∑

∇at
Qθ1(st, at) |at=πφ(st) ∇φπφ(st)

Update target networks:

θ′z ← τθz + (1− τ)θ′z
φ′ ← τφ+ (1− τ)φ′

end if

end for

V. SIMULATION RESULTS

A. Parameter Settings

In the proposed cybertwin-based architecture, we consider a

system deployed with 2 cloud servers and 3 edge servers, and

assume the system can support 50 users at maximum. The

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 13,2021 at 13:08:47 UTC from IEEE Xplore.  Restrictions apply. 



uplink rate and downlink rate (Gbps) are set as an uniform

distribution between 0 and 1. User computing capacity (GHz)

follows a uniform distribution between 0.8 and 1. Considering

that resource in servers may be consumed by other control

systems, computing resource (GHz) of edge servers is set

between 0 and 10, and that of cloud servers 10 to 50. To

mimic the scenario where users have to offload sometimes,

data size (bit) and computing density (cycle/bit) of each task

are both set as a random variable between 500 to 1500. The

ratio ϑ is set as a random variable between 0 and 0.5 to provide

occasional situation where downlink delay is non-negligible.

The uplink and downlink transmission power (W) are set as

0.5 and 5, respectively. The computing power (W) of edge

servers and cloud servers are set as 1 and 2, respectively. The

trade-off coefficient ω is set as 0.5. Tmax is set as 1 ms.

In the modified GAT network, the standard GAT layer

involves 8 hidden features and 8 heads, and the modified GAT

layer involves 5 hidden features and 1 head. To evaluate how

GAT fits task offloading data, the proposed algorithm is com-

pared with DNN-TD3-based algorithm and CNN-TD3-based

algorithm. The DNN consists of two 64-neuron hidden layers

as the one in [13]. The CNN contains three convolutional

layers and each layer is composed by 32 filters of 1× 16-

size. Both CNN and DNN adopt ELU as activation function

of hidden layers. These three models are chosen because they

respectively outperformed their counterparts, namely other

GATs, DNNs and CNNs, in our preliminary experiment. Other

hyperparameters are listed in Table I:

TABLE I
THE LIST OF HYPERPARANMETERS

Hyperparameters GAT DNN CNN

Critic Learning Rate 5 · 10−4 5 · 10−5 5 · 10−5

Actor Learning Rate 5 · 10−4 5 · 10−5 5 · 10−5

Optimizer Adam

Target Update Rate (τ ) 5 · 10−3

Batch Size 128

Discount Factor 0.99

Exploration Policy (ǫ1) N (0, 0.1)

Smooth Noise (ǫ2) clip(N (0, 0.2), 0, 0.2)

B. Results and Discussion

As shown in Fig. 3, TD3 with GAT converges faster and

better compared to TD3 with CNN or DNN, because graph

convolution presents better feature extraction capability on

graph data. This also proves that it is viable to improve task

offloading method from the perspective of data structure.

Be noted that average episodic reward in the following

experiments is obtained by going through 100 time steps and

averaged over 1000 episodes. Besides, some abbreviations are

used in legends: cache-considered is CC for short and non-

cache-considered NCC; Both All Off and Ran Off indicate

that each user randomly chooses one server to offload, but

Fig. 3. Average utility over training episodes.

Fig. 4. Average utility over users.

the former offloads a whole task and the latter offloads at a

random proportion.

Fig. 4 shows how different schemes perform over different

system scale. TD3 with GAT (blue and orange) outperforms

other methods. It is worth noted that GAT-CC is a notch

above GAT-NCC, because the cache-considered mechanism

spares some users from the delay and energy consumption of

uploading data. Since not all data required is cached in servers,

the gap looks minor.

Fig. 5 and Fig. 6 demonstrate how workload affects the

system performance. As task size or computing density grows,

the average utility of all methods decreases. Still, TD3 with

GAT is the best among them.

In Fig. 7 and Fig. 8, deteriorating transmission rate does

compromise the system performance because users struggle

to upload data or download results. Nevertheless, TD3 with

GAT achieves better performance compared to other methods.

Moreover, the cache-considered mechanism avoids uploading

when required data is already in servers, making the system

less vulnerable to worsening uplink.

VI. CONCLUSION

In this paper, we have designed an end-edge-cloud orches-

tration system on top of a cybertwin-based framework to

support simultaneous multi-task offloading in future network.
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Fig. 5. Average utility over task size.

Fig. 6. Average utility over computing density.

To maximize the trade-off utility between delay efficiency

and energy consumption efficiency, a novel method that incor-

porates the modified GAT network into the TD3 framework

has been proposed. Finally, simulation results show that the

proposed method outperforms DNN-TD3- and CNN-TD3-

based algorithms as well as other baseline strategies.
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