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Abstract—As an emerging technology, mobile edge computing
(MEC) can provide users with higher quality of service (Qos) such
as reducing tasks computing latency and energy consumption
of user equipments. Unmanned Aerial Vehicle (UAV) -assisted
MEC can apply this technology to more scenarios. In this paper,
we design a joint optimization algorithm to optimize the user’s
task offloading strategy and the trajectory of the UAV. When
the MEC server interacts with multiple users at the same time,
we adopt the differential evolution (DE) algorithm to obtain the
offloading policy of each user in the current time slot based on
the user location and UAV location. Aiming at the trajectory
optimization problem of the UAV, we adopt the optimistic actor-
critic (OAC) algorithm, which can minimize the weighted sum
of energy consumption and delay of the system, and derive the
optimal path through training. Simulation results show that the
proposed algorithm is superior to other algorithms in terms of
energy consumption and convergence performance.

Index Terms—Mobile edge computing (MEC), UAV-assited,
differential evolution (DE), optimistic actor-critic (OAC)

I. INTRODUCTION

With the user terminals of 5G networks grows, more emerg-
ing smart devices and internet applications such as augmented
reality (AR) /virtual reality (VR), cloud VR/AR, internet of
vehicles, ultra-high definition video transmission and so on
are being chosen by users [1]. But this will make the user
terminals generate a large amount of task data. If the data
is transferred to the cloud for processing, this will greatly
increase the load of the cloud servers and the latency of users.
Mobile edge computing (MEC), an emerging technology in 5G
networks, is receiving attentions from more and more people,
where servers are placed at the edge of the network and
users can offload tasks to MEC servers for processing, thereby
significantly reducing energy consumption and delay. For
traditional terrestrial networks, placing MEC servers at the
ground increases signal attenuation due to multipath effects
and blocking caused by non-line-of-sight (NLoS) paths, which
severely affects communication quality. Due to the high flex-
ibility and easy deployment of the Unmanned Aerial Vehicle
(UAV), UAV-assisted communication system has been widely
noticed and studied. The MEC server is integrated with the
UAV of the UAV-assisted MEC system, which can greatly
reduce the energy consumption and latency of the system since
the communication link established between the UAV and the
ground user can be considered as a line-of-sight (LoS) path.

There has been a lot of relevant research in the field of
UAV-assisted MEC system. Wang et al. proposed a joint

area division and trajectory optimization method to reduce the
energy consumption of the UAV and achieve load balancing
[2]. Liu et al. devised a resource allocation and trajectory de-
sign framework and proposed a three-stage iterative algorithm
to optimize the beamforming vector, resource allocation, and
trajectory of the UAV to achieve system energy minimization
[3]. In order to ensure the quality of experience for downlink
users, Hu et al. proposed a multi-stage alternative optimization
algorithm to maximize the computational efficiency [4]. But as
the complexity of the environment increases, the computation
time of traditional algorithms may increase exponentially.

To overcome the weaknesses of traditional algorithms, the
DRL algorithm has been applied to the field of UAV-assisted
MEC system. Chen et al. applied the DRL algorithm to
the MEC domain and proposed an improved reinforcement
learning algorithm based on the traditional algorithm for
solving the computational offloading and resource allocation
problems [5]. For the UAV trajectory optimization problem,
Zhu et al. proposed a sequence-to-sequence pointer network
model to input the clustering of UAV locations and ground
devices into the model, and used the actor-critic network
to train the model to obtain the optimal trajectory of the
UAV [6]. However, using traditional reinforcement learning
algorithms cannot train better models in a short time due
to the limitations of their exploration efforts. As a result,
traditional reinforcement learning algorithms are unable to
meet the training needs in complex environments.

This paper investigates the trajectory optimization of the
UAV and tasks offloading of UDs in a UAV-assisted MEC
system, where the UAV can integrate a server to handle the
tasks of UDs offloading. The system can support communi-
cation conditions for UDs in extreme cases, reducing energy
consumption and communication delay for UDs. To overcome
the shortcomings of the traditional algorithms, we use the
OAC reinforcement learning algorithm, where the approximate
confidence bounds are explored by maximizing the state-
action value function to train the optimal model. The main
contributions of this paper are summarized as follows.

1) We propose a UAV-assisted MEC system that combines
the tasks offloading strategy of UDs and the flight trajectory
of the UAV with the aim of minimizing the weighted sum of
energy consumption and delay of the system. The offloading
strategy of UDs is optimized based on the current position of
the UAV and the weighted sum of energy consumption and
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delay of the system, and the strategy includes total offloading,
partial offloading, and local processing. The trajectory of the
UAV is determined by the weighted sum of the optimized
offload policy and the energy consumption and delay of the
system.

2) To solve the proposed problem, we propose a joint
optimization algorithm that uses the DE algorithm to find the
current optimal offloading policy, and then determines the next
action of the UAV based on the offloading policy and the
weighted sum of energy consumption and delay of the system.
Our proposed joint optimization algorithm outperforms other
joint optimization algorithms in the weighted sum of energy
consumption and delay and has a significant advantage in
convergence.

The rest of the paper is organized as follows. Section II
presents the proposed system model of the UAV-assisted MEC
network and the proposed optimization problem. Section III
presents the proposed joint Optimistic Actor-Critic and Dif-
ferential evolution algorithm. Section IV shows the simulation
results. Finally, the full text is concluded in Section V.

II. SYSTEM MODEL

A simple model of UAV-assisted MEC system is shown
in Fig. 1. The system consists of an UAV equipped with
a MEC server, K users and a base station (BS). Using
K = {1, 2, 3, ...,K} denotes the set of UDs, all of which
are at arbitrary locations within the region Ω. The location
information of the k-th UD is denoted by Uk = {Xk, Yk}. BS
is used to provide communication services to UEs, and it is
assumed that all UEs are outside the BS communication range,
so the UAV can be used as a relay to provide services to users.
Assuming that each UD has tasks to be processed at each time
slot, the set L = {L1, L2, ....LK} denotes the input data size
of all UDs. Due to the limited computational resources of
UDs, tasks need to be offloaded to the MEC server carried by
the UAV for processing. The position of the UAV at time slot
t is denoted as M(t) = {X(t), Y (t), H}, where H denotes
the flight altitude of the UAV. The UAV communicates with
UDs within the communication range at each time slot, which
can greatly reduce the energy consumption and computational
delay of UDs. Considering the load pressure on the MEC
server, we divide the offloading method of UDs into two
schemes: total offloading and partial offloading, which can
guarantee the computing requirements of UDs and avoid the
overload of the MEC server.

A. Communication Model

Since the height of the UAV is high enough in the simulation
of this paper, we can assume the communication channel be-
tween the UAV and UDs as LoS. And the energy consumption
of transmitting the result back to UDs through downlink after
data are processed by MEC server is negligible, so only the
uplink is considered in this paper. Assuming that the users’
location is known, therefore, based on the location information

Fig. 1. The system model of UAV-assited MEC.

of the UAV, we can calculate the channel gain between the
UAV and UDs for each time slot, that is

hup(k, t) = β0d
−2(k, t) =

β0

H2 + ∥M(t)− Uk∥2
(1)

where β0 denotes the channel gain at a distance of 1 m. d(k, t)
denotes the Euclidean distance between the UD-k at the t-th
time slot and the UAV in the 3D coordinate system. Assuming
the UAV flies within Ω and the communication range between
UAV and UDs is defined as

∥M(t)− Uk∥ ≤ dmax (2)

where dmax is the maximum communication distance. We set
the communication strategy as

c(k, t) =

{
1, offload
0, local

(3)

After obtaining the channel gain, we can therefore calculate
the data transmission rate as

rup(k, t) = B0log2(1 +
Phup(k, t)

δ20
) (4)

where B0 represents the transmission bandwidth, P denotes
the signal transmit power of UDs, and δ20 is the power of
additive white noise.

We classify the offloading policy of UDs into partial of-
floading and total offloading, expressed in the form of 0 and
1. The offloading policy is expressed as

a(k, t) =

{
1, total offloading
0, partial offloading

(5)

We set the offload ratio for partial offloading to η. Therefore,
the amount of data left for local processing when the policy
is partial offloading is (1− η)Lk, and the ηLk data amount is
offloaded to the MEC server for processing.

B. Computation Model

Depending on the offloading method, we discuss the com-
putation model of the system separately:
• Total offloading: UDs with an offloading policy of total
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offloading offload all data to the UAV and the delay required
for offloading is given by

Tto,up(k, t) =
Lk

rup(k, t)
(6)

Thus, the data offloading energy consumption is expressed
as

Eto,up(k, t) = PTto,up(k, t) (7)

After the data is offloaded to the UAV, the elapsed time for
the data to be processed in the server is defined as

Tto,m(k, t) =
LkCm

fm
(8)

where Cm is the number of CPU cycles required by the
MEC server to process 1 bit of data and fm denotes the
computational resources of the MEC server. Therefore, the
computational energy consumption of UAV when the policy
is total offloading is given by

Eto,m(k, t) = Km(fm)3Tto,m(k, t) (9)

where Km denotes the effective capacitance factor of the
server CPU. The total latency and energy consumption re-
quired for data processing in UD-k are given by

Tto(k, t) = Tto,up(k, t) + Tto,m(k, t) (10)

Eto(k, t) = Eto,up(k, t) + Eto,m(k, t) (11)

• Partial offloading: when the offloading policy is partial
offloading, (1 − η)Lk tasks are processed locally. The delay
and energy consumed by local processing are defined as

Tpa,ud(k, t) =
(1− η)LkCud

fud
(12)

Epa,ud(k, t) = Kud(fud)
3Tpa,ud(k, t) (13)

where Cud is the number of CPU cycles required by UDs
to process 1 bit of data, fud and Kud are the computational
resources, and the effective capacitance factor of CPU of UDs,
respectively. The other part of the data is offloaded to the UAV
and then computed, and as with the total offloading, the time
and energy consumption of the task offload can be expressed
as

Tpa,up(k, t) =
ηLk

rup(k, t)
(14)

Epa,up(k, t) = PTpa,up(k, t) (15)

The latency and energy consumption of the server to process
the task are given by

Tpa,m(k, t) =
ηLkCm

fm
(16)

Epa,m(k, t) = Km(fm)3Tpa,m(k, t) (17)

Therefore, the total energy consumption and delay at time
slot t for the UD-k with the offloading strategy being partial
offloading are given by

Tpa(k, t) = max {Tpa,ud(k, t), Tpa,up(k, t) + Tpa,m(k, t)}
(18)

Epa(k, t) = Epa,ud(k, t) + Epa,up(k, t) + Epa,m(k, t) (19)

In order to minimize the delay of partial offloading, we can
adjust the offloading ratio to obtain min(Tpa(k, t)). Tpa,ud

and Tpa,up + Tpa,m are inversely proportional to each other
since the amount of tasks for each UD is constant. According
to the specific of mathematical increase and decrease function,
the minimum value can be obtained when Tpa,ue = Tpa,up +
Tpa,m. Therefore, the offload ratio can be obtained by the
following relationship

(1− η)LkCud

fud
=

ηLk

rup
+

ηLkCm

fm

⇒ η =
Cudfmrup

(Cmfud + Cudfm)rup + fudfm

(20)

• Local computation: the UDs located out of the UAV com-
munication range can only process the tasks locally. Similarly,
the latency and energy consumption of the computation for
UDs computed locally are given by

Tlo(k, t) =
LkCud

fud
(21)

Elo(k, t) = Kud(fud)
3Tlo (22)

C. Problem Formulation

We express the delay and energy consumption of UD-k at
time slot t as

T (k, t) = c(k, t) [a(k, t)Tto(k, t) + (1− a(k, t))Tpa(k, t)]

+(1− c(k, t))Tlo(k, t)
(23)

E(k, t) = c(k, t)(a(k, t)Eto(k, t) + (1− a(k, t))Epa(k, t))

+(1− c(k, t))Elo(k, t)
(24)

In this subsection, we discuss the question of minimizing the
weighted sum of energy consumption and latency in our UAV-
assisted MEC system. Since the UAV advances at a uniform
speed in this system and communicates with UDs after ad-
vancing the same distance after each acquired flight maneuver.
Therefore, we only need to consider the energy consumption
and time delay for communication and computation between
the UAV and UDs. It is assumed that the UAV acquires one
action at the end of each time slot and that all UDs regenerate
their tasks. We denote the design problem as

P1: min
A,M

T∑
t=1

[
ω

K∑
k=1

E(k, t) + (1− ω)

K∑
k=1

T (k, t)

]
(25a)

s.t. M(t), Uk ∈ Ω ∀k ∈ K (25b)
c(k, t) ∈ {0, 1} (25c)
a(k, t) ∈ {0, 1} (25d)

Mstart →Mend (25e)

where ω denotes the weight parameter to indicate the impor-
tance of energy consumption and delay. The constraint (25b)
indicates that both UDs and the UAV must be within the range
of Ω. The constraint (25c) indicates that only the UDs within
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the communication range of the UAV can communicate. The
constraint (25e) indicates that UAVs have fixed starting and
ending points.

III. THE PROPOSED JOINT OPTIMIZATION
ALGORITHM

Since our proposed optimization problem is non-convex,
we cannot obtain the optimal solution directly. This section
presents a joint optimization algorithm for solving the tasks
offloading problem of UDs and the trajectory optimization
problem of the UAV, respectively.

A. Tasks offloading policy optimization

The DE algorithm is a multi-objective optimization algo-
rithm that can be used to solve the overall optimal solution in
a multi-dimensional space. We use the DE to solve the optimal
offloading strategy for UDs. The process of the DE includes
population initialization, variation, crossover and selection.
The details of the algorithm are shown in Algorithm 1.
• Population initialization: N individuals are randomly and
uniformly generated in the solution space, and each individual
consists of a K-dimensional vector, i.e., the number of UDs,
and the initial population target vector is defined as

Xn(0) = {xn,1(0),xn,2(0), ...,xn,K(0)}
n ∈ {1, 2, ..., N} , k ∈ K

(26)

• Variation: There are various variation strategies, such as
DE/rand/1, DE/best/1, DE/rand/2, etc. In this paper, we adopt
the strategy of DE/rand/1. Firstly, three different vectors xg

r1,
xg
r2, xg

r3 are selected in each generation of the population,
where g denotes the number of iterative generation. Thus the
variance vector can be expressed as

vg
n = xg

r1 + F · (xg
r2 − xg

r3) (r1 ̸= r2 ̸= r3) (27)

where F is the scaling factor. According to the number of
iterations, F can be obtained by

F = F0· 2e
(1− G

G+1−g
)

(28)

where F0 is the initial scaling factor and G is the largest
number of iterations.
• Crossover: The experiment vector generated by the varia-
tional vector using the binomial crossover operation is given
by

ug
n,k =

{
vg
n,k, rand(0, 1) ≤ CR or k = krand

xg
n,k, otherwise

(29)

where CR is the crossover rate and CR ∈ (0, 1), and
krand is a randomly chosen integer in the range [1 : N ].
• Selection: The target vector or experiment vector of the
current generation is selected as the next generation target
vector which is given by

xg+1
n =

{
ug
n, f(ug

n) < f(xg
n)

xg
n, otherwise

(30)

where the f(· ) in (26) is our proposed objective function, and

Algorithm 1: Tasks Offloading Policy Optimization

Initialize F0, x0
n, n ∈ {1, 2, ..., N};

for episodes g = 0 : G do
for n = 1 : N do

Obtain the variance vector vg
n based on

Eq.(27);
Obtain the experiment vector ug

n based on
Eq.(29);

Obtain the next generation target vector xg+1
n

based on Eq.(30);
end
Update the scaling factor F based on Eq.(28);

end

we adopt the greedy algorithm to select the optimal vector as
the next generation target vector.

B. UAV trajectory optimization

We use the OAC reinforcement learning algorithm to obtain
continuous actions of the UAV as a way to optimize the
UAV flight trajectory. The OAC algorithm is explored by
maximizing the approximate confidence bound of the state-
action value function. The algorithm enables efficient training
in continuous control tasks. We use the location of the UDs,
the task volume size and the location of the UAV as status
information which is given by

State = {Uk, Lk,M(t)} , k ∈ K (31)

We use the deflection angle of the UAV as the action of the
algorithm, that is

Action ∈ [0, π/2] (32)

We obtain the action by sampling from the exploration
strategy πE , which takes the form πE = N(µE ,ΣE) and is
denoted as

µE = µT+

√
2δ∥∥∥∥[▽aQ̂UB(s, a)

]
a=µT

∥∥∥∥
Σ

ΣT

[
▽aQ̂UB(s, a)

]
a=µT

(33)
ΣE = ΣT (34)

To obtain the solution of P2, we use the opposite of the
objective function as the reward of the OAC, so the reward is
expressed as

reward = −
T∑

t=1

[
ω

K∑
k=1

E(k, t) + (1− ω)

K∑
k=1

T (k, t)

]
(35)

C. Joint optimization algorithm

The specific details of our proposed joint OAC DE opti-
mization algorithm are shown in Algorithm 2.
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Algorithm 2: OAC DE algrithm
Initial parameters ω1, ω2 of the critic and θ of the
target policy πT ;

Initialize target network weights and replay pool:
ω̆1 ← ω1,ω̆2 ← ω2,D ← ϕ;

for episode = 1 : epmax do
Randomly initialize the state s1;
for stept = 1 : T do

Sample action from exploration policy as in
(34)(35):at ∼ πE(at | st);

Inputting at and st into the environment;
Obtain the current offloading policy according

to Algorithm 1;
Obtain reward rt and new state st+1;
Store (st, at, rt, st+1, done) in rpm;
Sample a batch size of (st, at, rt, st+1, done)

from rpm;
Update two bootstraps of the critic:
for i ∈ 1, 2 do

Update ωi with
▽̂ωi
∥Q̂i

LB(st, at)−R(st, at)−
γmin(Q̆1

LB(st+1, a), Q̆
2
LB(st+1, a))∥22;

end
Update policy gradient θ with ▽θĴ

α
Q̂

′
LB

;
Update target networks:
ω̆1 ← τω1 + (1− τ)ω̆1, ω̆2 ← τω2 + (1− τ)ω̆2;

end
reward =

∑T
t=1 rt

end

IV. SIMULATION RESULTS

In this section, we show the simulation results of our
proposed algorithm. To better visualize the advantages of our
proposed algorithm, we compare it with other joint algorithms.
In addition, the simulation parameters of the model are shown
in Table I.

This paper compares the proposed algorithm with three
other methods as follows.
• DDPG PDPSO: It optimizes the trajectory of the UAV by

DDPG reinforcement learning algorithm and the offloading
strategy of UDs by PDPSO algorithm [7].
• DQN DE: It optimizes the trajectory of the UAV by DQN
reinforcement learning algorithm and the offloading strategy
of UDs by DE algorithm.
• SP DE: The UAV flies in a fixed direction, we do not
optimize the trajectory of the UAV, but only the offloading
strategy of the UDs.

In the parameters of OAC algorithm, the learning rate is
0.0001, the decay factor γ is set to 0.99, and the soft update
factor is 0.001. In the parameters of DE algorithm, the initial
scaling factor F0 is set to 2 and the crossover rate CR is set
to 0.3. We evaluate the performance of the algorithm by using
python. The simulation diagram of the optimized trajectory of
the UAV with different UDs distribution is shown in Fig. 2.

TABLE I
SIMULATION PARAMETERS

Parameters Value
The number of UDs K 10

The amount of data generated by each UD L [1,10] Mbits
The height of UAV H 100 m

Range of UDs and UAV movement Ω [100 m,100 m]
Channel gain per unit distance β0 -50 dB

Channel bandwidth for each UD B0 10 MHz
The transmission power of the UDs P 0.5 W

The noise power at the UAV δ20 -70 dBm/Hz
The CPU capacitance coefficient of UDs Kud 10−27

The CPU capacitance coefficient of UAV Km 10−28

Required CPU cycles per bit computation at local Cud 800 cycles/bit
Required CPU cycles per bit computation at UAV Cm 1000 cycles/bit

The UDs computing resources fud 1 GHz
The UAV computing resources fm 3 GHz

The weight of energy consumption and delay ω 0.75

The maximum communication range of the UAV at this time
is set to 100 m, and the number of UDs is 10. From the four
subplots, it can be seen that when the UAV is in the area with
a high number of UDs, the flight trajectory of the UAV is more
curved and biased toward the dense area, and vice versa, it is
smoother. This is because the UAV needs to fly longer in the
area with dense UDs to achieve the purpose of reducing the
offloading energy consumption and time delay.

Comparison of the training results of our proposed joint op-
timization algorithm with other joint optimization algorithms
is shown in Fig. 3 and Fig 4. Fig. 3(a) and (b) show that the
maximum communication range of the UAV is 100 m and
50 m, respectively, and the number of UDs is 10. Firstly,
it can be seen from the final convergence results that our
proposed optimization algorithm has the highest reward value,
which means that the weighted sum of energy consumption
and time delay of the system is the smallest. Secondly, in
terms of convergence speed, our proposed algorithm converges
faster than the DDPG PDPSO algorithm, and the convergence
results are smoother. Compared with the DQN DE algorithm,
DQN is difficult to obtain discrete actions and thus optimize
trajectory through training, so the convergence results are
significantly lower than other algorithms. In the comparison
with SP DE, the optimized trajectory significantly reduce the
energy consumption and delay of the system. Fig. 4 shows the
effect of the number of UDs on the weighted sum of energy
consumption and delay of the system. It can be seen that the
increased number of UDs makes the system more burdened,
but our proposed algorithm always outperforms the others. The
performance of DQN DE is always the worst, which indicates
that continuous actions are more suitable for designing the
trajectory of the UAV. The DDPG PDPSO is suitable for the
case of a small number of UDs and inferior to our proposed
algorithm in terms of environmental adaptation.

V. CONCLUSION

In this paper, we presented a problem of minimizing the
weighted sum of energy consumption and delay of the system
based on a UAV-assisted MEC system by jointly optimizing
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(a) (b)

(c) (d)

Fig. 2. Optimized trajectory of UAV.

(a)

(b)

Fig. 3. Comparison of training results of different joint optimization algo-
rithms.

Fig. 4. Impact of the number of UDs on the weighted sum of energy
consumption and delay.

the trajectory of the UAV and the offloading strategy of
the UDs. Since this problem is nonconvex, we proposed an
OAC DE joint optimization algorithm. We first solved the
optimal unloading strategy for the current time slot by the
DE algorithm, and then used the OAC reinforcement learning
algorithm to obtain the next action and optimize the flight
trajectory of the UAV. The final results show that our proposed
joint optimization algorithm achieves better performance in
terms of reducing energy consumption and delay as well as
the convergence of the algorithm.
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