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Abstract— A novel filtenna-filter-filtenna (FA-F-FA)-based
frequency-selective surface (FSS) technique is proposed using
multiple-mode resonators (MMRs). Based on this method,
a bandpass FSS with simultaneous wide passband and wide
out-of-band rejection is validated. The MMR unit cell consists
of two back-to-back magnetoelectric (ME)-dipole antennas and
a filter-embedded GND plane. Four modes are analyzed and
used to acquire a wide passband of the FSS. At the same time,
wide out-of-band rejections in both lower and upper bands are
controlled by the filter-embedded GND plane with four rotation-
ally symmetric quarter-wavelength transmission lines (QWTLs).
Moreover, the GND plane plays a crucial role in the impedance
matching of the proposed FSS. As a result, four transmission
poles (TPs) and three transmission zeros (TZs) of the proposed
FSS can be obtained, leading to a fourth-order filtering response
and wide out-of-band rejection. An equivalent circuit model,
current distributions, and electric field distributions are intro-
duced to illustrate the working mechanism of the FSS. Finally,
the proposed FA-F-FA-based FSS with a 50.2% 3-dB fractional
bandwidth (FBW3dB) in the passband and 53.5% and 119.2% of
the 20-dB fractional bandwidth (FBW20dB), respectively, in the
lower and upper rejection bands is achieved. The S-parameters
are stable under an oblique incident angle of 50◦. The measured
and simulated results are in good agreement. In addition, the
proposed FSS has the advantages of low profile, assembly free,
and dual-polarization application, which verify the versatility of
the FA-F-FA-based MMR FSS.

Index Terms— Filtenna, filter, frequency-selective surface
(FSS), magnetoelectric (ME)-dipole antenna, multiple-mode res-
onators (MMRs), wide out-of-band rejection, wide passband.
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I. INTRODUCTION

FREQUENCY-SELECTIVE surfaces (FSSs) comprised of

periodic structures can manipulate electromagnetic waves,

exhibiting bandpass or bandstop response. Therefore, different

FSSs have been widely used in antenna radomes, dichroic

subreflectors, electromagnetic shelters, and so on [1], [2], [3].

In these applications, an ideal bandpass filtering response

for incident electromagnetic waves is desired, where low

profile, high selectivity, low in-band loss, high out-of-band

rejection, and angular stability should be the figure of merit

realized. In addition, FSSs with wide passband and wide

out-of-rejection bands are gradually substantial in wideband

transmitarray [4], [5] and wideband radar cross section (RCS)

reduction [6], [7]. Therefore, developing effective and efficient

FSS techniques or structures is conducive to meeting these

stringent requirements.

Several kinds of FSS methods or structures have been

reported, including single-layer FSSs, multilayer FSSs, and

3-D FSSs. Traditional single-layer FSSs are composed of two-

dimensional periodic arrays based on resonant structures, such

as dipoles, slots, loops, patches, and their derivatives [1].

Even though some combined structures [8], miniaturization

methods [9], [11], and multiple-mode resonator (MMR) tech-

niques [10] are utilized to improve the performance of single-

layer FSSs, poor skirts and a narrow working bandwidth is

commonly attributed due to their limited resonant modes.

To obtain a high-order filtering response for sharp skirts,

different single-layer FSSs are cascaded to form multilayer

FSSs. In [12], a two-layer FSS is designed and validated

for bandwidth improvement compared with a single-layer

FSS. Some three-layer FSSs composed of two capacitive

patches and one inductive wire grid are stacked to achieve

two-order [13], fast roll-off [14], three-order [15], and dual-

band [16] filtering responses. These multiplayer FSSs indeed

exhibit a higher order filtering response compared with single-

layer FSSs. However, they have only a single function and

are unsuitable for practical applications. To obtain advanced

filtering performance, 3-D FSSs have been investigated by

employing transmission lines or waveguide structures [17],

such as coaxial waveguides and parallel-plate waveguides [18],

slot lines and microstrip lines [19], [20], [21], [22], [23], [24],

parallel-strip lines [25], and substrate integrated waveguides
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Fig. 1. (a) Schematic of the proposed FSS using MMRs and the
FA-F-FA-based MMR unit cell. (b) Working principle of the bandpass filtering
response of the FA-F-FA-based FSS.

(SIWs) [26], [27], [28], [29]. Although these methods and

structures are attractive filtering performances, they suffer

from either complex structures or poor out-of-band per-

formance. Therefore, it is still necessary to investigate on

FSSs with a simple, low-profile, and wide upper stopband

characteristic.

Alternatively, an FSS technique has been gradually con-

cerned from an antenna-filter-antenna (AFA) point of view.

It comprises receiving antennas, filtering structures, and trans-

mitting antennas [30], [31], [32]. The filtering responses of the

AFA-based FSSs mainly depend on the filtering structures.

By modifying the filtering coplanar-waveguide resonators,

three different bandpass FSSs can be accomplished [30].

A miniaturized bandpass FSS [31] and a five-layer FSS [32]

are designed based on the AFA concept. Since the filtering

response of AFA-based FSS is achieved by designing the

filtering structures only, the AFA-based FSSs usually suffer

from a poor filtering response due to the limited design

freedom. In [33], radiation nulls of the patch antenna and

a filtering slot on the GND plane are used to accomplish

an elliptical filtering response. However, this method is only

suitable for single-polarized applications. Moreover, both the

passband bandwidth and the upper stopband bandwidth are

relatively narrow. To achieve a wide passband bandwidth

and a high filtering selectivity, filtenna-to-filtenna (FA-FA)-

based FSS [34] is recently proposed using a back-to-back

magnetoelectric (ME)-dipole antenna array. The bandwidth

of out-of-band rejection is yet narrow, especially the upper

stopband improvement required.

This article investigates on a novel filtenna-filter-filtenna

(FA-F-FA)-based FSS with simultaneously a wide bandpass

and two wide stopbands using MMRs. The simplified design

principle is shown in Fig. 1. The MMR unit cell of FSS con-

sists of two identical filtennas connected by a filter-embedded

Fig. 2. Geometry of (a) Filtennas 1 and 2 and the filter-embedded GND
plane with QWTLs. (b) Three-dimensional view of the MMR unit cell of the
proposed FA-F-FA-based FSS. [Physical dimensions (units: mm): Lp = 2.1,
Ls = 3, Ls2 = 1.025, L r1 = 0.8, L r2 =0.875, L r3 = 0.65, L r4 = 0.575,
W1 = 0.3, W2 = 4.7, Ws = 0.95, Wr = 0.15, Dvia = 0.4, Dele = 1.7, and
H = 1.524].

GND plane. In this way, an FA-F-FA-based FSS is formed

by arraying the unit cell. The filtering response of the

FA-F-FA-based FSS takes advantage of the two filtennas and

the filter-embedded GND plane, and more design freedom for

the filtering response can be obtained, resulting in a high-

order filtering response and a wide out-of-band rejection.

In addition, the design can be integrated into a printed circuit

board (PCB) laminate without manual assembly, which means

that additional pins and screws for installation are not required.

This article is organized as follows. The FSS design process,

the geometry of filtennas, filter, and the unit cell of the FSS,

and the S-parameters of the FSS are given in Section II. The

modes of filtenna, filter, and the proposed FSS are discussed in

Section III. The out-of-band rejection in the lower and upper

bands and the cross polarizations are analyzed in Section IV.

Section V presents the FSS design guideline, the measure-

ment results of the FSS, and the figure-of-merit comparison.

A conclusion is given in Section VI.

II. FSS DESIGN

Fig. 1(a) shows the structures of the proposed FSS and the

FA-F-FA-based MMR unit cell, where the desired incident

waves with specific frequencies are selected to pass through by

the MMRs of the FSS, while the undesired waves are reflected.

The bandpass response of the FSS depends on the two high-

pass filtennas and a stopband filter, as shown in Fig. 1(b).

The two back-to-back filtennas can be treated as a single

MMR, and this property will be shown in Section III. Then,

a filter-embedded GND plane with four quarter-wavelength

transmission lines (QWTLs) is proposed to improve the out-

of-band performance. In this section, the MMR unit cell of

the FSS, including Filtennas 1 and 2 and the filter, will be

introduced in detail. Then, the FA-F-FA-based FSS will be

eventually arrayed using a periodic boundary condition, and

its final filtering response under a normal-incidence TE wave

will be illustrated.
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A. Filtennas 1 and 2

The geometries of Filtennas 1 and 2 elements are shown

in the upper and lower parts of Fig. 2(a), respectively. They

are ME-dipole antennas with identical structures, exhibit-

ing an intrinsic high-pass filtering response [34] and wide

working bandwidth by taking advantage of the combina-

tion of magnetic (M)-dipole mode and electric (E)-dipole

mode [36], [37], [38], [39], [40]. Different from the ME-dipole

antenna styles in [35], [36], [37], [38], [39], and [40], the

proposed filtenna element is integrated into a PCB laminate

to simplify the fabrication complexity. The ME-dipole consists

of an E-dipole and an M-dipole. The E-dipole antenna is

formed by etching four identical square patches on top of the

1.524-mm RO4350 substrate with a relative permittivity of

3.66, where four identical vertical metallic vias are utilized to

form the M-dipole antenna. Dual polarization is achievable by

the symmetric structure of the ME-dipole antenna along the

x- and y-axes.

B. Filter

The structure of the filter is shown in the center part of

Fig. 2(a), which is composed of a cross-slotted GND plane and

four rotationally symmetric QWTLs, where the wavelength is

at the frequency of transmission zero (TZ) in the upper band

of the FSS. The total length of each QWTL is the sum of L r1,

L r2, L r3, and L r4. On the one hand, when the QWTLs resonant,

no electromagnetic waves can pass through the slots, resulting

in a TZ in the upper band of the FSS. On the other hand, the

slots act as a bandpass filter, passing the resonant frequency

of the slots and rejecting the lower and upper frequencies

[1]. Therefore, the length of the slots controls the passband

response of the FSS. At the same time, as the common GND

plane of Filtennas 1 and 2, the filter plays an important role

in impedance matching for Filtennas 1 and 2.

C. FA-F-FA-Based FSS

The MMR unit cell of the proposed FA-F-FA-based FSS

is formed by combining Filtennas 1 and 2, and the filter-

embedded GND plane is shown in Fig. 2(b), where Filtennas

1 and 2 are connected back to back by the filter. Filtenna 1 is

built on a 1.524-mm RO4350 substrate, while Filtenna 2 and

the filter are built on another identical RO4350 substrate. A

0.1-mm Rogers RO4450F with a reflective dielectric of 3.55 is

used to bond the two substrates. The detailed dimensions of

the MMR unit cell of the FSS are listed in Fig. 2.

With the help of full-wave electromagnetic solver HFSS,

the periodic boundary condition is employed to analyze the

proposed FSS. The simulated S-parameters of the FSS under

normal-incidence TE waves are shown in Fig. 3. Since the

structure of the FSS is symmetrical along the x-axis and y-

axis, the S-parameters under normal-incidence TE and TM

waves are the same. Therefore, only S-parameters under a

normal-incidence TE wave are here for brevity. As shown in

Fig. 3, |S11| and |S22| are the same due to the identical structure

of Filtennas 1 and 2. Therefore, only |S11| will be given in

the following sections for simplification. Four transmission

Fig. 3. Simulated S-parameters of the FA-F-FA-based FSS under normal-in-
cidence TE waves.

Fig. 4. Transmission coefficients of FSS-A, FSS-B, and FSS-C.

modes (i.e., Modes 1–4) in the passband are obtained, leading

to a wide passband. The slot mode at the lower band edge is

suppressed at a very low level by being properly located at the

TZ, and three TZs at fz1, fz2, and fz3 are obtained, exhibiting

a wide out-of-band rejection.

III. MULTIPLE MODES OF FSS

In this section, the S-parameters for FSS-A, FSS-B, and

FSS-C are first given to illustrate the multiple modes of

the FA-F-FA-based FSS. Then, the current and electric field

distributions of the FA-F-FA-based FSS are further analyzed

to demonstrate the multiple modes of the proposed FSS.

A. Modes of the Filtennas and the Filter

MMRs have been widely used in ultrawideband (UWB)

bandpass filters due to the multiple adjacent resonance

modes [41], [42]. Similarly, MMRs are used to obtain a wide

passband of the proposed FA-F-FA-based FSS in this work.

To illustrate the multiple modes of the proposed FSS, three

kinds of FSSs are designed and analyzed in Fig. 4. The unit

cell of FSS-A consists of the proposed filtenna element and
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Fig. 5. Resonance modes of the FSS-D with different air gaps compared
with the modes of the proposed FSS.

a cross-slotted GND plane without QWTLs, while the unit

cell of FSS-B comprises the proposed filter element and two

identical 1.524-mm RO4350 substrates. Similarly, the unit cell

of FSS-C is made up of the proposed filtenna element and

the proposed filter element. The simulated |S21| of the three

FSSs is also plotted in Fig. 4. For FSS-A, two transmission

modes can be observed. For the FSS-B, fundamental and high-

order slot modes are found. Taking full advantage of the two

modes of FSS-A and the fundamental slot mode of FSS-B,

three transmission modes can be obtained for FSS-C.

To further investigate the multiple modes of the proposed

FSS, FSS-D is designed and compared with the proposed FSS

in Fig. 5. The unit cell of FSS-D is composed of two back-to-

back FSS-Cs and separated by an air gap. The simulated |S11|
of FSS-D with different separations (Hag) is depicted here.

When Hag = 0.65 mm, Modes 1–4, a slot mode among them

occurs. The slot mode is formed by the slots on the GND

plane, while the four modes are caused by Filtennas 1 and

2. When Hag decreases from 0.65 to 0.05 mm, Modes 1–4

move close to the center frequency and have better impedance

matching, while the slot mode moves to the lower frequency

due to strong coupling. Finally, Modes 1–4 of the proposed

FA-F-FA-based FSS can be obtained in the passband when

connecting the two FSS-Cs (i.e., Hag = 0 mm).

B. Modes of the FA-F-FA-Based FSS

To demonstrate the multiple modes of the proposed FA-F-

FA-based FSS, the current distributions on the top and bottom

layers of the proposed FSS at the frequencies of fp1, fp2, fp3,

and fp4 are given in Fig. 6. The bottom layer is excited under

a normal-incidence TE wave. It should be pointed out that

only the detailed current distributions at t = 0 are given here

for brevity. In Fig. 6, the E-mode, parallel to the TE wave,

represents that the E-dipole is strongly excited, as depicted

with a red solid arrow, while the M-mode, perpendicular to

the TE wave, means that the M-dipole is strongly excited,

as indicated by a black dashed arrow. The modes of current

distributions of the FSS at t = 0, T/8, T/4, and 3T/8 are listed

in Table I, where T is the period of the current distributions

Fig. 6. Current distributions of the four modes on the bottom and top layers
of the proposed MMR FSS with t = 0. (a) Mode 1 at fp1. (b) Mode 2 at fp2.
(c) Mode 3 at fp3. (d) Mode 4 at fp4.

TABLE I

MODES ON THE BOTTOM AND TOP LAYERS OF THE PROPOSED FSS WITH

DIFFERENT FREQUENCIES AND TIMES

caused by the proposed FSS. Since the modes have a period

of T/2, the modes at times from 0 to 3T/8 listed in Table I

can adequately represent the modes of the FSS in the whole

period. It can be observed that four different combination

modes, comprised of E-mode, M-mode, and the hybrid E- and

M-modes on both the top and bottom layers of the FSS, are

achieved, resulting in four modes at fp1, fp2, fp3, and fp4.

To further illustrate the four modes of the proposed

FA-F-FA-based FSS, the electric field distributions of the

E-plane of the proposed FSS under the normal-incidence TE

wave are introduced, as shown in Fig. 7. Port 1 is excited. The

blue solid arrows represent the inner electric field of a unit

cell, while the black dashed arrows show the mutual-coupling

electric field between adjacent unit cells. It can be observed

that the electric fields of each unit cell mainly include E1±,

E2±, E3±, and E4±, where the “+” and “−“ represent the

+y and −y directions of the electric field, respectively. E1±
and E3± are the inner electric field of each unit cell, while
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Fig. 7. Electric field distributions of the E-plane of the proposed MMR FSS:
(a) Mode 1 at fp1, (b) Mode 2 at fp2, (c) Mode 3 at fp3, and (d) Mode 4 at
fp4. Blue solid arrow: inner electric field of a unit cell; Black dashed arrow:
mutual-coupling electric field between the adjacent unit cells.

E2± and E4± are the mutual-coupling electric field between

the adjacent unit cells. Four modes based on electric fields are

realized, i.e., Mode 1 (E1+, E2−, E3−, and E4+) in Fig. 7(a),

Mode 2 (E1+, E2+, E3+, and E4+) in Fig. 7(b), Mode 3

(E1+, E2+, E3−, and E4+) in Fig. 7(c), and Mode 4 (E1+,

E2+, E3−, and E4−) in Fig. 7(d).

In summary, the four modes of the proposed FSS at fp1,

fp2, fp3, and fp4 can be analyzed with different current and

electric field combinations. Therefore, the wide passband for

the proposed FSS is achieved based on the four modes.

IV. OUT-OF-BAND REJECTION

This section demonstrates the operation mechanism of

out-of-band rejection in the lower and upper bands. First,

the equivalent circuit of ME-dipole antennas is adapted to

illustrate the lower band TZs of the proposed FSS, and the

length of the slots on the GND plane is adjusted to improve

the lower band rejection by suppressing the fundamental slot

mode. Finally, upper band TZs, upper band rejection, and cross

polarizations are investigated after embedding the rotationally

symmetric QWTLs into the GND plane.

A. Lower Band Rejection

The lower band rejection is analyzed by an equivalent circuit

model of Filtennas 1 and 2, as shown in Fig. 8(a). Due to

the identical structures of Filtennas 1 and 2, only one of the

models is given here. Since the two filtennas are traditional

ME-dipole antennas, consisting of an E-dipole and an M-

dipole, they can be equivalent to a series circuit composed

of an E-dipole antenna and an M-dipole antenna. Therefore,

the equivalent circuit consists of a load Z E and a transmission

line with a phase of θM and a characteristic impedance of Z M ,

as shown in Fig. 8(b). Z E represents the input impedance of

the E-dipole, while Z M and θM represent the characteristic

Fig. 8. (a) ME-dipole antenna model. (b) Its simplified equivalent circuit
model.

impedance and the phase of the M-dipole, respectively. Then,

the input impedance of filtennas can be calculated by the

following impedance transformation equation [43]:

Zin = Z M
Z E + j Z M tan θM

Z M + j Z E tan θM
. (1)

When Zin = 0 or Zin = ∞, two TZs of the FSS will be

obtained due to the two back-to-back filtennas [34]. Therefore,

(1) can be simplified as

Z M tan θM = j Z E (Zin = 0) (2)

or

Z M cot θM = − j Z E (Zin = ∞). (3)

Fixing the value of Z E , Z M and θM of M-dipole can be used to

adjust the TZs of the FSS. Here, θM and Z M can be calculated

as follows:
θM = 2π H

/
λg (4)

Z M = 60√
εr

arcosh
(

Sele

Dvia

)
. (5)

For (4), H and λg represent the height of the M-dipole

antenna and the wavelength of the electromagnetic wave in

the substrate, respectively. For (5), Z M can be equivalent to

a half characteristic impedance of a parallel transmission line

[43]. Sele and Dvia , respectively, represent the center spacing

of two adjacent vias elements and the diameter of the vias.

Therefore, the height (H) of the M-dipole antenna and the

diameter (Dvia) of the vias can be used to control the two

TZs of the FSS.

To analyze the TZs in the lower rejection band, simulated S-

parameters of the FSS with different H and Dvia are shown in

Fig. 9(a) and (b), respectively. When H elevates from 1.324 to

1.524 mm, the two TZs move to lower frequencies; when the

diameter of the vias rises from 0.2 to 0.4 mm, the two TZs

shift to higher frequencies.

To further investigate the lower band rejection, simulated

S-parameters of the FSS with different lengths (Ls) of the

slots are shown in Fig. 10. As mentioned before, the slots in

the GND plane keep a bandpass response at their resonance

frequencies. Similarly, the length of the slots can be adjusted to

control the lower band rejection by suppressing the slot mode.

In Fig. 10, when LS decreases from 3.8 to 3.0 mm, the slot

mode is gradually suppressed in the lower rejection band. This
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Fig. 9. Simulated S-parameters of the proposed FSS with. (a) Height (H)

of filtennas. (b) Diameter (Dvia) of the shorted metallized vias.

Fig. 10. Simulated S-parameters of the proposed FSS with different lengths
(Ls) of the slots on the GND plane.

is because the slot mode in the lower frequency moves to the

TZs in the lower band edge. To obtain a wider lower rejection

band, the slot mode in the rejection band should be prohibited.

Therefore, the length of the slots should be elaborated.

In short, the TZs in the lower rejection band can be

controlled by adjusting the height of the M-dipole antenna

and the diameter of the vias. Also, the lower band rejection

Fig. 11. Structure and the simulated S-parameters of Ref. FSS 1, Ref. FSS 2,
and the proposed FSS. (Filtennas 1 and 2 are not given for brevity.)

can be improved by elaborating the length of the slots in the

GND plane.

B. Upper Band Rejection

To analyze the upper band rejection, Ref. FSS 1 and Ref.

FSS 2 are introduced for comparison with the proposed FSS,

as shown in Fig. 11. The three FSSs consist of Filtennas

1 and 2, and GND plane, where Filtennas 1 and 2 are not given

for brevity. The only difference between Ref. FSS 1 and the

proposed FSS is that Ref. FSS 1 is without the QWTLs on the

GND plane, and other parameters remain the same for better

comparison. The simulated S-parameters of the two FSSs are

shown in Fig. 11. It can be observed that a sharp TZ and wider

upper rejection band can be obtained for the proposed FSS,

while there are no sharp TZs and wide upper rejection bands

for Ref. FSS 1. What is more, only two TPs can be obtained for

Ref. FSS 1. This is because the GND plane without QWTLs

has a limited matching for Filtennas 1 and 2 of Ref. FSS 1.

In a word, the QWTLs on the GND plane act as a stopband

filter in the upper rejection band and a matching network for

Filtennas 1 and 2.

For Ref. FSS 2, the four QWTLs in the cross slots are

nonrotationally symmetric, while for the proposed FSS, the

QWTLs are rotationally symmetric. Similarly, other structures,

dimensions, and materials remain the same for the two FSSs.

However, some undesired harmonic waves occur in the upper

band edge and upper rejection band for Ref. FSS 2, resulting

in an inadequate upper band filtering response, as shown in

Fig. 11. The undesired filtering response is caused by the cross

polarizations for Ref. FSS 2, and it will be illustrated in the

following.

The TZ at fz3 in the upper rejection band can be obtained

when the QWTLs resonate. fz3 can be approximately calcu-

lated by [43]

fz3 = c
4Lr

√
εe f f

(6)

where c is the velocity of the electromagnetic wave in the air,

εe f f represents the effective dielectric constant of the substrate,

and Lr is the total length of each QWTL, in which Lr is the
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Fig. 12. S-parameters of the proposed FSS with different lengths L r4 of
QWTLs. (Filtennas 1 and 2 are not given for brevity.)

Fig. 13. Cross polarizations of Ref. FSS 1, Ref. FSS 2, and the proposed
FSS. (Filtennas 1 and 2 are not given for brevity.)

sum of L r1, L r2, L r3, and L r4. As shown in Fig. 12, the partial

length L r4 of QWTLs is adjusted to control the TZ in the upper

rejection band. When L r4 rises from 0.275 to 0.675 mm, fz3

decreases from 19.7 to 17.0 GHz, which confirms (6).

C. Cross Polarizations

The cross polarizations for the three FSSs are studied in

Fig. 13. For Ref. FSS 2, it can be observed that there are the

largest cross-polarization reflection and transmission around

the upper band edge, while both the proposed FSS and Ref.

FSS 1 have a low cross-polarization level for both reflection

and transmission, which indicates that the proposed rotation-

ally symmetric QWTLs are with distinguished performance in

cross polarizations.

To further analyze and compare the cross-polarization

behaviors of Ref. FSS 2 and the proposed FSS, the cur-

rent distributions on the GND plane of the two FSSs are

compared at different times during the period of the current

distributions, as shown in Fig. 14. The two FSSs are excited

by a normal-incidence TE wave at 15.3 GHz, which is in

the upper band edge. The red solid rectangle and the black

Fig. 14. Current distributions on GND planes of (a) Ref. FSS 2. (b) Proposed
FSS under normal-incident TE wave with different times at 15.3 GHz (T
represents the period of current distributions).

dotted rectangle represent the co-polarization slot and cross-

polarization slot, respectively.

For Ref. FSS 2, the QWTLs in both the co-polarization slot

and cross-polarization slot have been excited with the times

from 0 to 3T/8, resulting in a large cross polarization of Ref.

FSS 2. For the proposed FSS, the QWTLs only in the co-

polarization slot are excited, and the current on the QWTLs

is with a weak magnitude and opposite phase, leading to a

small cross polarization for the proposed FSS. In other words,

the rotationally symmetric QWTLs can suppress the cross

polarizations efficiently. Therefore, the rotationally symmetric

QWTLs in the GND plane play a key role in improving the

cross-polarization performance of the proposed FSS, compared

with Ref. FSS 2.

V. IMPLEMENTATION AND MEASUREMENT

A. Design Procedure

The design procedure for the proposed FA-F-FA-based FSS

can be summarized in four steps as follows.

1) Filtenna Element: An ME-dipole antenna is selected as a

high-pass filter. The total lengths of the E-dipole antenna

and M-dipole antenna are about a quarter waveguide

wavelength at the center frequency of the passband.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 23,2023 at 05:42:11 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: FA-F-FA-BASED FSS WITH SIMULTANEOUS WIDE PASSBAND AND WIDE OUT-OF-BAND REJECTION 5053

TABLE II

FIGURE-OF-MERIT COMPARISON OF THE FSSS UNDER NORMAL-INCIDENCE WAVES

Fig. 15. (a) Photograph of the prototype of proposed FA-F-FA-based FSS.
(b) Measurement setup in the anechoic chamber.

2) Filtering and Matching GND Plane: The four QWTLs

are rotationally symmetric, and the total length of each

QWTL is close to a quarter waveguide wavelength at

the frequency of transmission zero in the upper band of

the FSS.

3) Symmetric FA-F-FA Unit Cell: Symmetric cross slots

are used to make Filtennas 1 and 2, and the GND plane

symmetric along the x-axis and y-axis. The two filtennas

are connected by the through-holed GND plane back to

back.

4) FSS Design: The periodic boundary condition is

employed to analyze the proposed FSS.

Fig. 16. S-parameters of the proposed FSS under TE waves with different
incidence angles of 0◦, 25◦, 50◦, and 60◦. (a) Simulated. (b) Measured.

B. Measured Results

Fig. 15(a) shows the prototype of the proposed FSS. The

overall size of the prototype is 220.9 × 220.9 × 3.148 mm

[9.03 λ0 × 9.03 λ0 × 0.13 λ0 (λ0 is the free-space wave-

length at the center frequency of 12.27 GHz)], consisting of

47 × 47 unit cells. The measurements are carried out in an
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anechoic chamber to avoid interference signals, as shown in

Fig. 15(b).

Since the S-parameters under TE and TM waves are almost

the same due to the symmetric structure of the proposed FSS,

therefore, only S-parameters under the TE waves are given

here for brevity. The simulated and measured S-parameters

of the FSS under TE waves with different incidence angles

of 0◦, 25◦, 50◦, and 60◦ are compared in Fig. 16. It can be

observed that the S-parameters keep good angular stability

from 2 to 35 GHz under 50◦ incident angle. Also, the measured

results and the simulated ones are in good agreement.

C. Comparison

Some classic and recently published FSSs are listed

in Table II for the figure-of-merit comparison. Compared

with multilayer FSSs, SIW FSSs, AFA-based FSSs, and

FA-FA-based FSS, the proposed FA-F-FA-based FSS is with

higher order, wider rejection band, wider passband, and better

angular stability. What is more, compared with [13], [28],

[29], [31], and [33], the insertion loss of our work is the

lowest even though the substrate of our work has the highest

loss tangent. With all these merits, the proposed FA-F-FA-

based FSS is promising as a new FSS technique with high-

order filtering response, wide passband, and wide out-of-band

rejection.

VI. CONCLUSION

In this article, a new FA-F-FA-based FSS method has been

proposed using MMRs. The method is realized by using an

MMR array composed of back-to-back ME-dipole antennas

and a filter-embedded GND plane without increasing the unit

cell size. The lower rejection band of the proposed FSS

depends on the inherent lower transmission null of ME-dipole

antennas and the length of slots. The QWTLs on the GND

plane control the upper rejection band. Moreover, the intro-

duction of QWTLs does not deteriorate the cross-polarization

level of the FSS. The wide passband benefits from four

modes of the FSS. The wide-passband, wide-rejection-band,

and high-order filtering performances are obtained using the

FA-F-FA-based structure. In addition, it has the advantages

of dual-polarization application and assembly free based on

the PCB process. Therefore, the proposed FA-F-FA-based

FSS using MMRs is a promising candidate for the new FSS

technology.
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