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Semi-Asynchronous Model Design for Federated
Learning in Mobile Edge Networks
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Abstract—Federated learning (FL) is a distributed machine
learning (ML). Distributed clients train locally and exclusively
need to upload the model parameters to learn the global model
collaboratively under the coordination of the aggregation server.
Although the privacy of the clients is protected, which requires
multiple rounds of data upload between the clients and the server
to ensure the accuracy of the global model. Inevitably, this results in
latency and energy consumption issues due to limited communica-
tion resources. Therefore, mobile edge computing (MEC) has been
proposed to solve communication delays and energy consumption
in federated learning. In this paper, we first analyze how to select
the gradient values that help the global model converge quickly and
establish theoretical analysis about the relationship between the
convergence rate and the gradient direction. To efficiently reduce
the energy consumption of clients during training, on the premise
of ensuring the local training accuracy and the convergence rate of
the global model, we adopt the deep deterministic policy gradient
(DDPG) algorithm, which adaptively allocates resources according
to different clients’ requests to minimize the energy consump-
tion. To improve flexibility and scalability, we propose a new the
semi-asynchronous federated update model, which allows clients to
aggregate asynchronously on the server, and accelerates the con-
vergence rate of the global model. Empirical results show that the
proposed Algorithm 1 not only accelerates the convergence speed
of the global model, but also reduces the size of parameters that
need to be uploaded. Besides, the proposed Algorithm 2 reduces
the time difference caused by user heterogeneity. Eventually, the
semi-asynchronous update model is better than the synchronous
update model in communication time.

Index Terms—Federated learning, mobile edge networks, deep
deterministic policy gradient, semi-asynchronous update model,
energy efficiency.
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I. INTRODUCTION

CURRENTLY, there are tens of thousands of connected
Internet of Things (IoT) devices around the world. These

devices typically have powerful computing and communication
capabilities. As such, they can be deployed in densely popu-
lated areas for data collection (e.g., medical data [1] and air
quality monitoring [2]). Based on these collected data, we can
make predictions for unknown and intelligent applications with
classification, which can facilitate taking appropriate actions
according to the application [3].

In the traditional cloud-centric approach, datasets are up-
loaded to a centralized server for processing. On one hand, the
inevitable communication delay and energy consumption are
amplified in long-distance transmissions. On the other hand,
client datasets may be subjected to malicious attacks during
transmissions, revealing the client’s privacy. Mobile Edge Com-
puting (MEC) is proposed as an efficient method to solve the
unavoidable latency and energy consumption problems due to
powerful computing and storage capabilities [4]. In order to en-
sure that distributed training can still maintain efficient learning
in the case of heterogeneous datasets, a decentralized machine
learning (ML) approach called Federated Learning (FL) is in-
troduced in [5]. In a FL algorithm, the datasets are normally
distributed over numerous clients. These unique characteristics
determine that the MEC adapts to the efficient deployment of
FL.

In a FL, mobile devices exploit datasets to cooperatively train
a ML model. The model parameters (i.e., the model weights) are
uploaded to the server for aggregation. Generally, the process of
uploading parameters needs to be repeated many times in order
to achieve the desired accuracy [6]. FL converges smoothly on
some heterogeneous settings (e.g., non-independent and identi-
cally distributed (non-i.i.d.) datasets [7]). The method to ensure
the convergence of FL has been studied [8]-[9]. However, a
large number of uncertain factors (e.g., heterogeneous clients
and energy consumption) need to be considered in the real FL
deployment in MEC.

Important challenges and future research directions for FL
are discussed in [10]. These challenges are outlined as follows:
1) statistical challenges. 2) communication costs (e.g., high
dimensionality of the updates data leads to communication
consumption). 3) resource allocation (e.g., resource competition
between heterogeneous devices). These challenges determine
whether FL can have a stable training and converges quickly.
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Some factors such as learning accuracy, delay, and energy
consumption are also very important when FL and MEC sce-
narios are jointly considered. Due to the heterogeneity of a large
number of users in the mobile edge computing, it is difficult to
guarantee the learning accuracy in FL. In the MEC scenario, we
pay more attention to the optimization of the system energy
consumption and delay. When FL and MEC are considered
together, optimizing the energy consumption and the delay is
a challenge under considering the influence of parameters (e.g.,
number of clients selected K and the number of local iterations
selected E) in FL.

Traditional FL applies synchronous upload strategy. The ag-
gregation server performs weighted aggregation after all datasets
are uploaded. However, the synchronous upload strategy is
impractical in MEC scenarios. A large number of datasets is
transmitted to the aggregation server, which leads to transmis-
sion congestions. Based on this, the semi-asynchronous update
model is designed in this paper, which allows the aggregation
server to aggregate individually without uploading datasets from
all users. The contributions of this work are summarized as
follows.
� Importance-Based updating: First and on the basis of the

observation of many previous experiments [11], most of the
updating gradient values in FL use sparse matrix. Second,
many of the gradient values are unconducive for the conver-
gence of the global model. In line with the characteristics,
we design a selection algorithm based on the gradient di-
rection, and establish theoretical guarantees. The selected
gradients for uploading accelerates the convergence rate of
the global model.

� Optimization cost FL design: On the premise of the training
accuracy of the local clients and the convergence rate of the
global model, the energy consumption and delay during
the local training are formulated as an optimization prob-
lem. To solve this mixed integer nonlinear programming
(MINLP) and NP-Hard problem, the DDPG algorithm is
proposed. In addition, we analyze the parameters (e.g.,
the number of clients selected K and the number of local
iterations E) in the object problem influence about the
optimal solution.

� Semi-Asynchronous transmission design: In order to mini-
mize the FL communication cost of heterogeneous clients,
we design a semi-asynchronous transmission update model
as shown in Fig. 1, which reduces the waiting time caused
by synchronization. Additionally, we formulate the trans-
mission cost optimization problem, and theoretically anal-
yse the bandwidth allocation and transmission time that are
biconvex functions. Based on this theoretical analysis, we
propose a low-complexity search algorithm to obtain the
optimal solution for minimizing the energy consumption
and delay.

The rest of the paper is organized as follows. We first present
the related work in Section II. Then, we present the FL model
optimization design in Section III. In Section IV, we analyze the
local training system model and provide the cost optimization
based on the DDPG algorithm. In Section V, we present a semi-
asynchronous update model to solve the synchronization delay

Fig. 1. Heterogeneous federated learning training round in a mobile network,
where the clients complete the training immediately and the server aggregates
asynchronously.

problem. Experimental results are given in Section VI and the
conclusion is presented in Section VII.

II. RELATED WORK

Inspired by the protection of data privacy, the concept of
FL was introduced in [12]. The FL allows clients to train on
mobile devices, and aggregates the global model by uploading
the trained parameters to avoid privacy leakage.

Recently, optimizing the FL communication delay was con-
cerned by selecting gradient values of uploading. The focus
of this strategy was not to upload the entire updates while to
upload part of the updates according to a certain strategy in
each communication round. Eliminating the sparse value in the
updating values was applied in [13]. The latter proposed to select
the updating gradient values based on the training loss value of
different rounds, and established a weight table to optimize the
selected gradient values. However, the simulation results showed
that the algorithm was only applicable to i.i.d datasets yet the per-
formance used non-i.i.d (i.e., heterogeneity of clients) datasets
was unestablished. The optimization of correlation between
gradients was studied in [14], which selected gradient values
for uploading with fixed threshold correlation values. Unfortu-
nately, the limiting section of clients that discontent the relative
threshold was not applicable to real scenarios, which reduced
the quality of experience for clients and diversity of datasets.

For deploying FL in MEC [15], [16], [17], we mainly focus
on the optimization of the delay (e.g., training time and trans-
mission time) and energy consumption (e.g., training energy and
transmission energy). The optimization of the training time and
the energy consumption was discussed in [18], [19], [20], which
considered minimizing the FL energy and time consumptions
through resources (e.g., client’s CPU frequency and communica-
tion bandwidth) allocation under the premise of the global model
convergence. Although distinctive opinions were studied in the
literature as stated above, they did not consider the impact of
client training accuracy when MEC and FL were combined. The
challenges in optimizing FL and MEC that analytically connects
the total energy and delay with the accuracy of the local client

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 20,2023 at 03:35:27 UTC from IEEE Xplore.  Restrictions apply. 



16282 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 12, DECEMBER 2023

Fig. 2. Federated semi-asynchronous model design learning algorithm block
diagram in a mobile edge network.

training and the convergence rate of the global model should be
concerned.

The key point of the FL algorithm is uploading the gradient
values to the aggregation server for averaging. The optimization
of transmission time was studied in [20], [21], although different
methods (e.g., convex optimization) were used to optimize the
transmission time. However, they were all based on the strategy
of synchronous updates. The waiting time (e.g., client discon-
nect and resource shortage) caused by the synchronous update
strategy was unavoidable.

To address the above problem, we analyze how the charac-
teristics (e.g., the number of clients selected K and the number
of local iterations E) of FL affects the energy consumption, the
local training time and the global model convergence rate. We
theoretically analyze how to select useful gradient information
(i.e., reduce the amount of datasets that need to be uploaded) to
accelerate the convergence rate of the global model. Besides, a
semi-asynchronous updating model was used to minimize the
delay and energy consumption during transmission. The block
diagram of the proposed algorithm is shown in Fig. 2.

III. FL MODEL OPTIMIZATION DESIGN

In this section, we concisely introduce FL. According to the
observation results, a direction based update algorithm is pro-
posed on the basis of the traditional FL algorithm. The complete
steps are given in Algorithm 1.

A. Federated Learning

Generally, FL contains two main components: the dataset
owners (e.g., participants) and the global model (e.g., FL aggre-
gation server), respectively. Let N = {1, ..., U} indicates the set
of dataset clients, and Dk represents a whole dataset of training
data samples of client k. The process of FL can be roughly
divided into the following processes
� Step I (Initialization): Aggregation server broadcasts the

global model parameters W 0
G to the clients participating

before training.
� Step II (Local model training): After getting the param-

eters, the clients carry out local training (e.g., stochastic
gradient descent) to obtain trained parameterswt

k. Through
a local iterative optimization, the optimal local parameters

Algorithm 1: FL Gradient Selection.
Input global model WG and the global gradient values ϑG

loop k = 1, 2, 3, . . .K for each epoch
Using (5) to update local gradient values and record the
loss values
loop τ = 1, 2, . . .max for local training iteration

if loss values decrease
Execute (7) softly update gradient

end if
if τ = max

Using (8) and (9) select the gradient values that
meets the requirements

end if
end loop

end loop
Iteration terminates and output gradients.

is given by

wt∗

k = argmin
wt

k

f(wt
k), (1)

where wt∗
k and wt

k represent the local model parameters
and optimal local parameters, respectively. Subsequently,
parameters wt∗

k are uploaded to the server.
� Step III (Global model aggregation): On the server side,

the synchronous update strategy is applied to obtain new
global parameters W t

G.

W t
G =

1∑
k∈N Dk

N∑
k=1

Dkw
t
k. (2)

The local clients communicate with the server in many rounds to
obtain the desired accuracy of the global model. Currently, the
widespread and classical algorithm for aggregating the uploaded
parameters is the FedAvg algorithm proposed in [6], which
calculates the weighted average method to update the global
model.

B. Key Insights

In FedAvg, the update of the global model depends on
the weighted average of the gradient values uploaded by the
clients participating in the training. Normally, partially uploaded
gradient values incapably accelerate the convergence of the
global model. When the global server executes as shown in
(3), meaningless gradient parameters interfere the convergence
rate of the model. The convergence of the FL has been proved
in [6]. The important priori conditions in the proof are that the
variance of the stochastic gradients in each client is bounded and
the expected squared norm of stochastic gradients is uniformly
bounded.

From [6], the variance of stochastic gradients can be expressed
as

E‖∇fk(w
t
k, ξ

t
k)−∇fk(w

t
k)‖2 ≤ δ2

k. (3)
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The expected squared norm of stochastic gradients is given by

E‖∇fk(w
t
k, ξ

t
k)‖2 ≤ G2. (4)

where E represents a mathematical expectation. ‖ ∗ ‖ represents
square norm. δ2

k and G2 represent the bound of variance and
squared norm, respectively. ∇fk(w

t
k, ξ

t
k) represents gradient

values under datasets ξtk.
The above two formulae show that the modulus of the gradient

and gradient divergence can be measured numerically in terms
of the convergence of the analytical model.

C. Algorithm Based on Gradient Direction Analysis

Based on the local SGD and FedAvg [22], we prove the
feasibility of the screening algorithm. After receiving the global
model parameters, the local model parameters are calculated by

wt
k = wt−1

k − η∇fk(w
t
k, ξ

t
k). (5)

where η represents the learning rate. For the convenience of
expression, we use characterϑk := −η∇fk(w

t
k, ξ

t
k) to represent

the latter part. From the above formula, the variation of wt+1
k is

determined by the ϑk. Based on this observation, the design of
the algorithm is to pick the gradient values that accelerate the
convergence of the global model. The complete proof is given
in Appendix A.

D. Algorithm Design

Inspired by the analysis in [6], the average gradient direction
of K clients can be used as the parameters of the global model.
To obtain a fixed precision ε, the round of communication is
given by

R = O
[

1
ε

((
1 +

1
K

)
EG2 +

Γ + G2

E

)]
, (6)

whereΓ typically represents the differences between clients non-
i.i.d datasets.O represents the equivalent order of magnitude and
E represents the number of iterations.

We use a soft update to track the parameters of the global
model after each local training to expedite the convergence of
the global model.

∇f t
new,k(w

t
k, ξ

t
k) = μ∇fk(w

t
k, ξ

t
k) + (1 − μ)∇F (W t−1

G ), (7)

where μ represents a soft update parameter value. ∇F (W t−1
G )

represents a gradient value of the global model at time t− 1.
In the reverse update phase, we pick out the gradient values

consistent with the gradient direction of the global model. The
relevance of the local updateϑk with respect to the global update
ϑG are calculated by

ϑk = −η∇fk(w
t
k, ξ

t
k) (8)

ϑG = −η∇F (W t−1
G ), (9)

where ϑk indicates the size and direction of the update of the
current user gradient values, and ϑG represents the vector direc-
tion of the global model parameters. Generally, local gradient
parameters and global gradient parameters are characterized as

two-dimensional parameters.

D(x,y)(ϑk, ϑG) =

{
1, sgn(ϑk

(x,y)) = sgn(ϑG
(x,y))

0, sgn(ϑk
(x,y)) �= sgn(ϑG

(x,y)),
(10)

where D represents the different gradient directions table be-
tween the client’s model and the global model. sgn() represents
a symbolic function.

During the local training, the gradient table is established
by comparing the positive and negative values of the local
and global updated gradient values. The positive and negative
gradient values reflect the directions of the weight update, and
the gradient values with different directions are set to be zero.
The gradient table values represent the relevance of the current
position during the update process. The gradient values consis-
tent with the global model direction are given by

wt
k = wt−1

k + Diϑk. (11)

IV. LOCAL TRAINING SYSTEM MODEL AND

PROBLEM FORMULATION

In the previous section, we established a weight table to
remove invalid gradient values. In FL, distributed users upload
gradient values to the server for aggregation. When we jointly
consider MEC-FL, removing the invalid gradient value can
reduce the transmission energy consumption. In this section, we
analyze the training time and energy consumption of the local
distributed training in detail. Compared with previous work, we
consider the impact of the local training accuracy on the energy
consumption and delay. Finally, we propose the FL energy and
time weighted sum optimization problem.

A. Computation Model

Despite that some previous work verified the effectiveness of
FL, the optimization of the energy consumption and time were
still required. The total cost of FL in the training phase, displayed
in Fig. 1, involves the training time and the energy consumption.

Let jk express the computation capacity of client k, which
is measured by the number of CPU cycles per second. The
computation time at client k needed for the data processing is
calculated by

T com
k =

CkDk

jk
, ∀k ∈ K, (12)

where Ck (cycles/sample) is the number of CPU cycles required
for computing one sample dataset at client k. Dk represents the
dataset volume. According to [23], the energy consumption for
computing the total number of CkDk CPU cycles at client k is
calculated by

Ecom
k = κCkDkj

2
k, ∀k ∈ K. (13)

where κ represents the battery capacity constant.
Under the above formulae, the total consumption of the local

client k during training one round can be expressed as

Ccomk = σT com
k + (1 − σ)Ecom

k , ∀k ∈ K. (14)
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B. Local Training Accuracy and Problem Formulation

1) Local Training Accuracy: When the FL is deployed in
the MEC, the training accuracy of the global model and the
accuracy of the local model affect the training time and energy
consumption. Previous work [18], [20] have considered the
impact of the global model accuracy on the transmission time
and energy consumption. However, the local training accuracy
was not considered.

From Fig. 1, we can observe that the client’s training time
affects the subsequent transmission. When the training time is
too long, the client is regarded as disconnected, which affects
the aggregation of the global model.

In order to consider the influence of the local client training
accuracy (i.e., 
) on FL, we utilize the convergence result in [24]

T (
,E,K) =
1



(
1
2
+

1
2

√
1 + 
(1 + E + E2 K)

)
, (15)

where T represents the total number of the SGD. From the above
formula, we can conclude that the training rounds required to
achieve the desired accuracy (i.e., 
) are related to the number
of iterations (i.e., E) and the number of clients selected (i.e., K).

2) Problem Formulation: Our target is to minimize the train-
ing time and the energy consumption while ensuring conver-
gence. We transform the problem into the following

P1 : min
jk,E,K,�,R

R∑
r=1

K∑
k=1

Ccomk T (
,E,K) (16)

s.t. 0 ≤ jk ≤ jmax, ∀k ∈ K, (17a)

0 ≤ 
 ≤ 1, ∀k ∈ K, (17b)

R ≥ 1, E ≥ 1, R, E ∈ Z
+, (17c)

1 ≤ K ≤ N, K ∈ Z
+. (17d)

We note that the optimal solution of problem P1 is affected
by E and K, and these parameters affect the accuracy (i.e., ε) of
the global model. To ensure the accuracy of the global model,
we utilize the convergence result [6] to rewrite the problem as

P2 : min
jk,E,K,�,R

R∑
r=1

K∑
k=1

Ccomk T (
,E,K). (18)

s.t. 0 ≤ jk ≤ jmax, ∀k ∈ K. (19a)

0 ≤ 
 ≤ 1, 0 ≤ ε ≤ 1, ∀k ∈ K. (19b)

E ≥ 1, 1 ≤ K ≤ N, K,E ∈ Z
+. (19c)

R ≤ 1
ε

((
1 +

1
K

)
EG2 +

G2 + Γ

E

)
, R ∈ Z

+.

(19d)

Obviously, P2 is an integer nonlinear programming problem,
and the optimal solution is related to parameters (e.g., E, K, R),
which is difficult to infer an exact expression. In the following
section, we verify the relationship between P2 and the hyperpa-
rameters.

C. Theoretical Verification

In this section, we analyze the impact of different superpa-
rameters on the accuracy of the global model.
� Impact ofΓ: Inspired by [6],Γ is used to quantify the degree

of non-i.i.d (i.e., clients heterogeneity), which is defined as

Γ = F (WG)
∗ −

∑N

k=1
pickkf(w

t
k)

∗, (20)

where F (WG)
∗ and f(wt

k)
∗ indicate the minimum loss

values of the global model and clients model, respectively.
pickk expresses the probability of the client selection. If the
dataset is non-i.i.d, Γ is non-zero, with its value reflecting
the heterogeneity of the data distribution. Through the
simulation results, we verify that it is generally a positive
number and depends on the sampling plan.

� Impact of K: From the constraint of P2, we can conclude
that the K value may affect the convergence rate, which
is included in O(EG2

K ). Different values of K in the FL
control the number of clients participating in the training.
Intuitively, a larger K accelerates the convergence rate.
However, the latter increases the amount of heterogeneous
datasets, and reduces the convergence rate. The reason
for this result is that the global model needs to trade-off
the impact caused by the heterogeneity of the dataset,
which leads to the stagnation of updates. The subsequent
simulation results also confirm our analysis.

� Impact of E: First, we discuss the influence of E on the
communication rounds, and derive the exact expression.

Theorem 1: The optimal solution E∗ of problem P2 satisfies

E∗ =

√
G2 + Γ

G . (21)

This verifies our proof in Algorithm 1, which partial gradients
altered does not influence the convergence. We give the proof in
Appendix B.

D. Solving Problem P2

To solve P2, which is a non-convex problem with strong
coupling between parameters, we propose to apply deep rein-
forcement learning algorithm. The reasons are as follows: 1) we
incapably obtain the prior knowledge of clients, which causes
heuristic algorithms impossibly. 2) it is possible to deploy deep
neural networks on the client side. 3) for NP-hard problems,
conventional heuristic algorithms cannot obtain a solution in
a polynomial time complexity. Furthermore, the complexity
increases as the number of clients increases. In this section, we
first introduce the DDPG algorithm, and apply it to solve the
problem of minimizing the energy consumption and delay.

1) Deep Deterministic Policy Gradient: DDPG is a deep
deterministic strategy gradient algorithm, which is proposed
to solve the problem of continuous motion control. DDPG
optimizes agent policies through a series of agent environment
interactions. Generally, DDPG modeled as MDP obtains the
state spaceS and the action spaceA. The agent aims to maximize
the performance objective function and iteratively optimizes
strategy (or policy) π. Through multiple rounds of interactions,

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 20,2023 at 03:35:27 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: SEMI-ASYNCHRONOUS MODEL DESIGN FOR FEDERATED LEARNING IN MOBILE EDGE NETWORKS 16285

the target of the agent is to maximize the expected reward. The
expected reward is expressed as

Rt =

T∑
t=1

γr (st, at) , 0 < γ < 1, (22)

where r(st, at) indicates the reward at t slot state and action.
γ represents the attenuation factor. The DDPG contains two
types of networks, namely, policy network and critic network.
The former outputs the action according to the results of the
interaction with the environment, and the latter critics the action
according to the Q values. For the policy network, with the
deterministic policy π, the Q values are updated. Then, we have

Qπ (st, at) = E [r (st, at) + γQπ (st+1, at+1)] . (23)

The critic network guides the policy network by minimizing
the experience loss function, according to [25], which can be
written as

L (ω) = E (yt −Qω (st, at|ω))2 , (24)

yt = r (st, at) + γQw′
(st+1, π (st+1|ζ ′)) , (25)

where w′ and ζ ′ parameters represent the target critic network
and the policy network, respectively, which are used to fix
network parameters.

2) Algorithm Design Based on DDPG: We map the client’s
initial state to the environment, which is used to interact with
the agent to obtain the state and reward of each time slot. The
MEC server as an agent to interact with the environment obtains
the state values (e.g., datasets and local client training accuracy

), which reflects the heterogeneity among clients. Based on the
previous analysis, we set the state values as

Si∈K = (Ci,Di, 
i,Γi) , (26)

where Ci is the number of CPU cycles required for computing
one sample data. Di represents the number of tasks that a client
needs to upload. 
i indicates the client’s local training accuracy.
Intuitively, different parameter’s values map to different client’s
states.

Immediately, we input the state’s values into the policy net-
work as the input values. To maximize theRt in (20), the strategy
π is iteratively optimized, and the action values of the policy
network is conceived as

A ⊆K
k=1 {a1, a2, . . ., ak|ak = π(sk|ζ)} , (27)

where ak means that the CPU frequency with client k during
the training, which can be used as a factor to adjust the training
time and the energy consumption.

In order to find the optimal solution of the P2 problem, we set
the reward in the DDPG algorithm as P2 problem. The reward
function Rt is given by

Rt = − min
jk,E,K,�,R

R∑
r=1

K∑
k=1

Ccomk T (
,E,K) , (28)

where the reward Rt (optimal energy) is obtained by the ap-
propriate action and different client’s states. The solution of P2

Algorithm 2: Soft Update Based on DDPG Algorithm.
Step 0: Initialization.

Randomly initialize critic network Q(s, a|ω) and
policy network π(s|ζ)
Initialize target network ώ and ζ́
Initialize replay buffer B.

Step 1: Training.
loop episode = 1, 2, 3, . . .max for each epoch

Select action at = π(st|ζ) + φ according to policy and
exploration noise;
Execute action at and observation st to obtain;
reward rt and new state st+1;
Store information (st, at, rt, st+1) in B;
Sample random mini-batch from B;
Execute (23) to obtain expected reward;
According to (22) minimize loss;

end loop
Step 2: Updating.

Update policy network using the sampled policy
gradient;

∇L(π(ζ)) =
1
N

∑
i

∇Q(si, π(ζ))∇π(si|ζ).

Soft update target network parameters;

ω′ = μω + (1 − μ)ω′

ζ ′ = μζ + (1 − μ)ζ ′

Iteration terminates and output reward.

problem corresponds to the action of the network output. The
complete steps are illustrated in Algorithm 2.

V. SEMI-ASYNCHRONOUS UPDATE MODEL DESIGN

In the previous section, we leveraged the DDPG algorithm
to optimize the training time of clients. The reason for this is
that the heterogeneity of users leads to a large difference in the
training time, which leads to the users dropping. Optimizing the
client training time can reduce the problem that users can not
participate in aggregation due to resource constraints.

Most of the previous work has considered synchronous update
strategy, which undoubtedly leads to waste of the energy con-
sumption. In this section, we first formulate the resource alloca-
tion to optimize the transmission time and energy consumption.
Besides, a semi-asynchronous update model is established, and
it is proven that it has a better convergence effect than the
synchronous model.

A. Transmission Model and Problem Formulation

We assume that the local FL task communication adopts the
orthogonal frequency division multiple access (OFDMA) tech-
nology. According to the designed semi-asynchronous model,
we can upload parameters directly after training. The uplink
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rate of client k is given by [26]

�k = ρkB log(1 +
pk�

2
k

N0
), ∀k ∈ K, (29)

where ρk ∈ [0, 1] is the bandwidth allocation ratio with client k.
B represents the bandwidth resources. Furthermore, pk and �k

indicate the client transmit power and the instant channel gain,
respectively. N0 represents a white gaussian noise.

The transmission delay between client k and a base station on
the uplink is given by

Tk =
Lk

�k
, ∀k ∈ K, (30)

whereLk is the uploaded gradient value. According to the above
formulae, the total consumption of the local client k during the
transmission can be expressed as

Ck = pkTk =
TkN0

�2
k

(
2

Lk
ρkBTk − 1

)
, ∀k ∈ K. (31)

Our goal is to minimize the energy consumption and delay
during transmission. The server allocates the bandwidth before
each round of transmission, and fixes it throughout the round.
Therefore, the minimization of the energy consumption problem
can be expressed as

P3 : min
ρk,Tk

K∑
k=1

Ck (32)

s.t.
K∑
k=1

ρk = 1, ∀k ∈ K, (33a)

0 ≤ ρk ≤ 1, ∀k ∈ K, (33b)

0 < Tk ≤ Tmax, ∀k ∈ K. (33c)

To solve the above problem, the base station minimizes the
transmission energy consumption and delay by determining the
bandwidth allocation. Here, we loosen the time requirement,
because clients do not need to wait for other clients but only
need to meet that the transmission time is less than the maximum
endurance time.

B. Solving the Optimization Problem P3

In this subsection, we describe some properties of the opti-
mization problem P3. Furthermore, we propose a roulette strat-
egy with reducing the search complexity to solve P3. Obtaining
the optimal ρ∗ and T ∗ is displayed in Algorithm 3.

1) Characterizing Problem P3:
Theorem 2: Problem P3 is strictly biconvex.
Proof: For any 0 < T ≤ Tmax, We have

∂2C
∂2 T

= 2
1

ρBT
ln 2N0

T 2B�2ρ

[
(L − 1)

2 ln 2N0L
T 3�2B2ρ2

]
> 0.

Similarly, for any 0 < ρ < 1, we have

∂2C
∂2ρ

= 2
L

ρBT
ln 2N0L
B�2

[
2ρBT + ln 2L

ρ4BT

]
> 0.

Algorithm 3: Roulette Strategy.
Step 0: Initialization.

Random Initialize M feasible solution sets X0

Step 1: iteration.
loop t = 1, 2, 3, . . .max for each time slot

loop i = 1, 2, 3, . . .M for local training iteration
Using (24) to calculate the energy consumption of
the corresponding solution set;
Execute (25), (26) mapping energy consumption
values of different solution sets to different
probabilities;
Implement (27) generates better performing solution
sets;
Execute ε greedy strategy;

xi =

{
xi, probability (1 − ε).

xi = xi +N0, otherwise.

end loop
end loop
Iteration terminates and output (T ∗, ρ∗).

We conclude that P3 is strictly biconvex.
Functions with biconvex properties can make use of search

algorithms such as alternating search algorithms to achieve
guaranteed optimal solutions. However, the feasible solution of
the P3 problem is a real number domain, which undoubtedly
increases the complexity of the search. Based on this, we design
a roulette strategy to reduce the search complexity.

2) Algorithm Design: The idea of the roulette strategy is
that the more valuable individuals are retained with a higher
probability.
� Enhance the individual: Each individual corresponds to a

set of feasible solutions, which obtains the corresponding
cost. We map the individual to the corresponding proba-
bility.

ratioi =
Ci∑M
i=1 Ci

. (34)

csi =

M∑
i=1

ratioi. (35)

where Ci represents a group of feasible solutions. We
replicate more individuals, and produce more derivation
of new individuals as given by

new(x) ⊆M
i=1

{
old(xi), random(i) < cs(i),

i = i+ 1, otherwise.
(36)

� Update the individual: To avoid getting stuck in the lo-
cal optima, we use ε greedy strategy to explore differ-
ent solution sets, which solve the exploration-exploitation
dilemma.

3) Semi-Asynchronous Update Model: To solve the in-
evitable waiting problem caused by the synchronous update,
as displayed in Fig. 3, we discuss a single client execution FL.
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Fig. 3. Typical iteration round of the update procedure difference between synchronous and semi-asynchronous: i) synchronization needs to wait for all users to
upload after training. In semi-asynchronous mode, users upload directly after training, ii) the former update requires the gradients of K users, however the latter
only needs the gradients uploaded at the current moment.

In the t aggregate phase, the server accepts the trained model
wt

k from any client, and updates the global model by weighted
averaging

W t = (1 − α)W t−1 + αwt
k, (37)

where α ∈ (0, 1) is the mixing hyperparameter. Based on the
semi-asynchronous aggregation formula, the difference between
synchronous and semi-asynchronous reflects in the quantity of
clients participating in the average weight, which affects the
direction of the global parameters.

Corollary 1: The trade-off α on the convergence rate is given
by

a) 0 < α < 1
2 :

The deflection angle θ gradually increases, and the weight of
the global model parameters in the previous round is larger.

b) 1
2 < α < 1 :

The deflection angle θ gradually decreases, and the weight of
the local model parameters of updating is larger.

c) α = 1
2 :

The deflection angle is the largest. The global model param-
eters of the previous round and the uploaded client parameters
have equivalent impact on the global model parameters of the
next round.

We give the proof in Appendix C. Intuitively, the effect of
reducing the quantity of clients participating in the weight update
is neutralized by the adjustment of α.

VI. SIMULATION RESULTS AND ANALYSIS

In this section, we assess the algorithms designed for each
problem. We first introduce the simulation settings, and present
the experimental results and analyses.

We evaluate our results on the real datasets (e.g., MNIST). For
the non-i.i.d established datasets, following the identical settings
in [5], which limits each client only to have part of the datasets.

A. Simulation Algorithm 1

1) Simulation Settings: We used the MNIST datasets for
experiments. We divided the 60000 data samples into N = 100
edge devices with the non-i.i.d dataset. Each device contains
600 unbalanced samples and the corresponding labels. For all
simulation, we first randomly initialize the network parameters
W0, and set up a local training mini-batch b = 30. In each local
training round, randomly selects K clients to execute E times
local training.

2) Sampling Scheme: Intuitively, different clients selection
schemes reflect the heterogeneity of datasets distribution. For
the sampling scheme, we follow a similar setup in [6], which
uses random sampling and uniform sampling, respectively.
� Scheme I: Assuming that N contains a subset of K ran-

domly selected with replacement according to the sampling
probabilities pick1, . . ., pickK .

� Scheme II: Assuming that N contains a subset of K uni-
formly selected from N without replacement. Assume the
data is balanced in the sense that pick1 = · · · = pickK =
1
N .

3) Benchmark Settings: As to incarnate the performance of
the optimization algorithm, we set up three baselines for com-
parison displayed in Fig. 4.
� Benchmark 1: Standard federal aggregation algorithm

in [5], which is widely referenced in the literature. The
main idea is that uploads all the gradient values, and
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Fig. 4. Accuracy and data volume for different update strategies and sampling scheme with MNIST datesets. (a) Under the same setting, uniform sampling leads
to greater heterogeneity of datasets. (b), (d) Our proposed algorithm has a faster convergence rate under both schemes. (c), (e) The proposed algorithm can use less
upload data to achieve a faster convergence rate.

calculates the average values as parameter of the global
model.

� Benchmark 2: Existing according to random weights up-
date strategy in [13], which selects the uploaded gradient
values by establishing the weight table. First, partial gradi-
ent values are randomly selected for training, and records
the values change of the corresponding position. During
the update phase, only the gradient value of the heavy
coordinates is uploaded.

� Benchmark 3: Existing according to the correlation re-
flected in [14], which allows clients with large correlations
to participate in the aggregation while clients with small
correlations do not participate in the aggregation.

Fig. 4(a), (b) demonstrates the results of the proposed al-
gorithm. It is clear that it has a faster convergence rate than
other Benchmark algorithms under both sampling schemes. We
proposed algorithm pick out gradient values that is conducive to
accelerate the convergence of the global model.

The superiority of the proposed algorithm does not only reflect
in the acceleration of convergence but also reduces the amount
of datasets that need to be uploaded, which is shown in Figs.
4(c), (e). The reason for this phenomenon is that uncorrelated
gradient values are eliminated to reduce the amount of uploaded
datasets.

The gradient value selection method proposed in this paper
eliminates sparse values and some gradient values that are dif-
ferent from the updating direction of the global model, which
not only accelerates the convergence speed of the global model
but also reduces the energy consumption and delay of datasets
uploading.

B. Simulation Algorithm 2

1) Simulation Settings: For DDPG experiments, we initialize
the parameters of the policy network and learning rate with 0.001
and 0.01, respectively. In each episode, clients participating in
the training calculate the cost and each result is averaged over
50 episodes. In order to better fix the network parameters, the
parameters of the two networks are updated in each 100 episodes.

2) Benchmark Settings: Fig. 4 compares the performance
of the proposed algorithm with the following two benchmarks
about the total learning time and energy consumption.
� Random: The clients randomly select the working fre-

quency of the training, and calculate the current energy
consumption and time.

� Greedy: Only chooses the parameters of the minimum
energy consumption, without considering the constraints of
the local training accuracy and the global model accuracy.

Figs. 5(a), (b) validates our analysis that the hyperparameter
of K has little effects on the accuracy and empirical loss value
of the global model. Fig. 5(c) demonstrates that the proposed
algorithm optimizes the client’s training time through resource
allocation, which avoids the disconnection problem caused by
the synchronized model.

Figs. 5(d), (e) demonstrate that our proposed algorithm
achieves the resource optimization better than the two
benchmarks. The proposed algorithm allocates resources ac-
cording to the heterogeneity of clients, and minimizes the energy
consumption and delay.

By combining the hyperparameters in FL with the optimiza-
tion of energy consumption and delay in MEC, the DDPG
algorithm designed in this paper optimizes the system energy
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Fig. 5. Optimizing local training time and energy consumption based on DDPG. (a), (b) The effect of K value on the test accuracy and experience loss value
is small. (c) Our proposed algorithm optimizes the training time of clients through resource allocation. (d), (e) The proposed algorithm optimization of time and
energy consumption is better than other strategies.

Fig. 6. Total transmission time for different scheduling strategies and semi-asynchronous update model training performance. (a) Our proposed method converges
faster and more accurately than synchronous update. (b) Influence of parameter α on the convergence of semi-asynchronous models. (c) The proposed algorithm
optimization of transmission time is better than other strategies.

consumption and delay without reducing the accuracy of the
global model. Different sampling schemes and statistical chal-
lenges are considered.

C. Simulation Semi-Asynchronous Update Model

1) Simulation Settings: For experiments, consider an
OFDMA system where the bandwidth B = 1 MHz, channel
gains �k are modeled as independent Rayleigh fading with
average path loss set as 10−4. The noise variance is N0 =
10−8 W/Hz, the number of CPU cycles for computing one
sample data and task size, {Ck} {Dk}, following the uni-
form distribution in the range of [10, 30] and [5, 8] MB,
respectively.

2) Benchmark Settings: To evaluate our proposed semi-
asynchronous update strategy, we compare it with two existing
synchronous update schemes.
� Benchmark 1: Existing scheduling strategy in [21], which

client occupies part of the bandwidth in time slot t, and
the aggregation server adopts synchronous updates. This
means that it needs to wait for all clients to complete the
upload before updating.

� Benchmark 2: Establishing a scheduling strategy in [20],
which client occupies all the communication resources at
time t, and uploads the parameters in turn. When all client
uploads parameters, the aggregation server performs the
update operation.

The performance gap between the semi-asynchronous up-
date model and the synchronous update model are displayed
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in Fig. 6(a). The reason for this observation is that, as het-
erogeneous datasets increase, the parameters uploaded by the
clients only contain part of the information, and oversimplified
averaging operation unable to help the global model to converge
quickly.

Fig. 6(b) shows the effect of the parameter α on the conver-
gence rate of semi-asynchronous models. Intuitively, larger α
leads to a better convergence rate. The reason for this observa-
tion is that, as α increases, client’s parameters occupy larger
proportion during the soft update. The asynchronous upload
mechanism ensures that the global model only needs to trade
off a portion of the heterogeneous datasets, which means that
there is no stagnation of the update due to a large amount of
heterogeneous datasets.

Fig. 6(c) depicts the transmission time in different scheduling
strategies, which also reflects the difference between a syn-
chronous update strategy and an asynchronous update strategy.
The semi-asynchronous update model proposed in this paper
solves the synchronization waiting time issue caused by users
heterogeneity. By controlling the regulator α, the convergence
speed of the global model parameters can be changed, and the
delay can be minimized without reducing the accuracy of the
global model.

VII. CONCLUSION

In this paper, we studied the energy consumption and delay
issues for FL in mobile edge networks. We proposed a novel
method of selecting gradients based on gradient directions to
solve the problem of massive uploaded datasets, and analyze the
rationality of the selection algorithm. To improve the quality of
the user experience, we considered the client’s training accuracy
in optimizing the local training energy consumption and delay,
and analyzed the impact of different parameters (e.g., K, E
and Γ). We also proposed a semi-asynchronous update strategy
to avoid the waiting time caused by the synchronization, and
analyzed the influence of different soft update parameters (e.g.,
α) about the global model update direction. Experimental results
validated our theoretical analysis and revealed the effectiveness
of the proposed algorithm.

APPENDIX A
PROOF OF PICK ALGORITHM

To prove by SGD and FedAvg, we first analyze the gradient
direction requirements of the SGD in the case of convergence.
Our object is to find a suitable 
∗ to satisfy f(
1) > f(
2) >
. . . > f(
k). We rewrite the target function as


∗ = argmin
�k

f(
k). (38)

Assuming that the solution is found through the SGD at time t,
the Taylor expansion of the difference from the optimal solution
can be expressed as

f(ωt, βt)− f(ω∗, β∗) =
∂f(ω∗, β∗)

∂ω∗ (ω − ω∗)

+
∂f(ω∗, β∗)

∂β∗ (β − β∗). (39)

The problem is transformed into finding the minimum value
of the empirical loss function. Now, when the value on the right
side of the equation is zero, the parameter at t is the optimal
solution. We transform the form of vector inner product into the
expression of a gradient update.[

ω∗

β∗

]
=

[
ωt

βt

]
− λ

[
∂f(ω∗,β∗)

∂ω∗
∂f(ω∗,β∗)

∂β∗

]
. (40)

From the above formula, we get the expression of the gradient
update as follows.

wt+1 = wt − λ∇fk(w
t
k). (41)

ϑk = −λ∇fk(w
t
k). (42)

To obtain the optimal parameters, the direction of the gradient
affects the convergence rate. On this basis, we prove that the
global model still converges when the partial gradient value is
altered. ϑk(w

t
k) represents the changed values.

E‖ϑk(w
t
k)− ϑk(w

t
k)‖2 ≤ E‖ϑk(w

t
k) + ϑk(w

t
k)‖2 ≤ 4λ2G2.

(43)
The above formula shows that the direction of modifying only

part of the gradient still satisfied Lipschitz.

APPENDIX B
PROOF OF THEOREM 1

We first establish the functional relationship between com-
munication rounds and iterations.

R(E) =
1
ε

((
1 +

1
K

)
EG2 +

G2 + Γ

E

)
. (44)

For arbitrary E, we have

∂R
∂E

=
1
ε

((
1 +

1
K

)
G2 +

G2 + Γ

E

)
, (45)

∂2R
∂2E

=
2
(
G2 + Γ

)
E3

> 0. (46)

Similarly, for any 1 < K < N, we obtain the same conclusion

∂2R
∂2 K

=
2EG2

εK3
> 0. (47)

Since the domain of E and K is convex, we conclude that R(E)
is convex.

If let ∂R
∂E = 0, we have

1
ε

((
1 +

1
K

)
G2 +

G2 + Γ

E

)
= 0, (48)

E∗ =

√
K
(
Γ + G2

)
(K + 1)G2 . (49)

In the reality scenario, thousands of clients participates in FL,
K  1, we have

E∗ =

√
G2 + Γ

G . (50)

Therefore, (19) can be obtained.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 20,2023 at 03:35:27 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: SEMI-ASYNCHRONOUS MODEL DESIGN FOR FEDERATED LEARNING IN MOBILE EDGE NETWORKS 16291

APPENDIX C
PROOF OF COROLLARY 1

We first establish a functional relationship between weights
α and angles θ.

θ(α) = arccos

[
(1 − α)W t−1αwt

k

|(1 − α)W t−1αwt
k|

]
. (51)

For the convenience of the expression, we let

A = |(1 − α)W t−1αwt
k|,

B = (1 − α)W t−1αwt
k.

For any 0 < α < 1, we have

∂2θ(α)

∂2α
= −

[(
1 − (

B

A
)2

)− 3
2 (1 − 2α)BW t−1wt

k

A2

+
2W t−1wt

k

A

(
1−
(
(1−α)W t−1wt

k

A

)2
)− 1

2

⎤
⎦< 0.

(52)

We conclude that θ(α) is a concave function.

∂θ(α)

∂α
=

1√
1 −

(
B
A

)2

(2α− 1)W t−1wt
K

A
. (53)

Following, we let ∂θ(α)
∂α = 0, we have

Case 1: ifα= 1
2 , θ(α) takes the maximum value, which means

the deflection angle is the maximum.
Case 2: if 0 < α < 1

2 , ∂θ(α)
∂α < 0, which is a decreasing

function. The deflection angle decreases as α increases.
Case 3: if 1

2 < α < 1, ∂θ(α)
∂α > 0, which is an increasing

function. The deflection angle decreases as α decreases.
Therefore, α can trade off the value of the deflection angle,

which completes this proof.
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