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Abstract—Federated learning (FL) is a distributed machine
learning (ML). Distributed clients train locally and exclusively
need to upload the model parameters to learn the global model
collaboratively under the coordination of the aggregation server.
Although the privacy of the clients is protected, which requires
multiple rounds of data upload between the clients and the
server to ensure the accuracy of the global model. Inevitably, this
results in latency and energy consumption issues due to limited
communication resources. Therefore, mobile edge computing
(MEC) has been proposed to solve communication delays and
energy consumption in federated learning. In this paper, we first
analyze how to select the gradient values that help the global
model converge quickly and establish theoretical analysis about
the relationship between the convergence rate and the gradient
direction. To efficiently reduce the energy consumption of clients
during training, on the premise of ensuring the local training
accuracy and the convergence rate of the global model, we adopt
the deep deterministic policy gradient (DDPG) algorithm, which
adaptively allocates resources according to different clients’ re-
quests to minimize the energy consumption. To improve flexibility
and scalability, we propose a new semi-asynchronous federated
update model, which allows clients to aggregate asynchronously
on the server, and accelerates the convergence rate of the global
model. Empirical results show that the proposed Algorithm
1 not only accelerates the convergence speed of the global
model, but also reduces the size of parameters that need to
be uploaded. Besides, the proposed Algorithm 2 reduces the
time difference caused by users heterogeneity. Eventually, semi-
asynchronous update model is better than synchronous update
model in communication time.

Index Terms—Federated learning, mobile edge networks, deep
deterministic policy gradient, semi-asynchronous update model,
energy efficient.

I. INTRODUCTION

CURRENTLY, there are approximately tens of thousands

of connected Internet of Things (IoT) devices around the

world. These devices typically have powerful computing and
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communication capabilities. As such, they can be deployed in

densely populated areas for data collection (e.g., medical data

[1] and air quality monitoring [2]). Based on these collected

data, we can make predictions for unknown and intelligent

applications with classification, which can facilitate taking

appropriate actions according to the application [3].

In the traditional cloud-centric approach, datasets are up-

loaded to a centralized server for processing. On one hand,

the inevitable communication delay and energy consumption

are amplified in long-distance transmission. On the other hand,

client datasets may be subjected to malicious attacks during

transmission, revealing the client’s privacy. Mobile Edge Com-

puting (MEC) is proposed as an efficient method to solve the

unavoidable latency and energy consumption problems due

to powerful computing and storage capabilities [4]. In order

to ensure that distributed training can still maintain efficient

learning in the case of heterogeneous datasets, a decentralized

machine learning (ML) approach called Federated Learning

(FL) is introduced in [5]. In a FL algorithm, the datasets

are normally distributed over numerous clients, which the

communications between the server and clients are typically

operated at lower rates since limited communication resources

compared to datacenter settings. These unique characteristics

determine that the MEC adapts to the efficient deployment of

FL.

In a FL, mobile devices exploit datasets to cooperatively

train a ML model. The model parameters (i.e., the models

weights) are uploaded to the server for aggregation. Generally,

the process of uploading parameters need to be repeated

many times in order to achieve the desired accuracy [6]. FL

converges smoothly on some heterogeneous settings (e.g., non-

independent and identically distributed (non-i.i.d.) datasets

[7]). The method to ensure the convergence of FL has been

studied [8]- [9]. However, a large amount of uncertain factors

(e.g., heterogeneous clients and energy consumption) need to

be considered in the real FL deployment in MEC.

Important challenges and future research directions for FL

are discussed in [10]. These challenges are outlined as follow:

1) statistical challenges. 2) communication costs (e.g., the high

dimensionality of the updates data leads to communication

consumption). 3) resource allocation (e.g., resource competi-

tion between heterogeneous devices). These challenges deter-

mine whether FL can have a stable training and converges

quickly.

Some factors such as learning accuracy, delay and energy

consumption are also very important when FL and MEC

scenarios are jointly considered. Due to the heterogeneity of

a large number of users in the mobile edge computing, it is
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difficult to guarantee the learning accuracy in FL. In the MEC

scenario, we pay more attention to the optimization of the

system energy consumption and delay. When FL and MEC

are considered together, optimizing the energy consumption

and the delay is a challenge under considering the influence

of parameters (e.g., the number of clients selected K and the

number of local iterations selected E) in federated learning.

Traditional FL applies synchronous upload strategy. The

aggregation server performs weighted aggregation after al-

l datasets are uploaded. However, the synchronous upload

strategy is impractical in MEC scenarios. A large number

of datasets is transmitted to the aggregation server, which

leads to transmission congestions. Based on this, the semi-

asynchronous update model is designed in this paper, which

allows the aggregation server to aggregate individually without

uploading datasets from all users. The contributions of this

work are summarized as follows.

• Importance-Based updating: First and on the basis of the

observation of many previous experiments [11], most of

the updating gradient values in FL use sparse matrix.

Second, many of the gradient values are unconducive for

the convergence of the global model. In line with the

characteristics, we design a selection algorithm based on

the gradient direction, and establish theoretical guaran-

tee. The selected gradients for uploading accelerates the

convergence rate of the global model.

• Optimization cost FL design: On the premise of the

training accuracy of the local clients and the conver-

gence rate of the global model, the energy consumption

and delay during the local training are formulated as

an optimization problem. To solve this mixed integer

nonlinear programming (MINLP) and NP-Hard problem,

the DDPG algorithm is proposed. In addition, we analyze

the parameters (e.g., the number of clients selected K and

the number of local iterations E) in the object problem

influence about the optimal solution.

• Semi-Asynchronous transmission design: In order to min-

imize the FL communication cost of heterogeneous

clients, we design a semi-asynchronous transmission

update model as shown in Fig. 1, which reduces the

waiting time caused by synchronization. Additionally, we

formulate the transmission cost optimization problem,

and theoretically analyse the bandwidth allocation and

transmission time that are biconvex functions. Based on

this theoretical analysis, we propose a low complexity

search algorithm to obtain the optimal solution for mini-

mizing the energy consumption and delay.

The rest of the paper is organized as follows. We first

present the related work in Section II. Then, we present the

FL model optimization design in Section III. In Section IV,

we analyze the local training system model and provide the

cost optimization based on the DDPG algorithm. In Section

V, we present a semi-asynchronous update model to solve the

synchronization delay problem. Experimental results are given

in Section VI and the conclusion is presented in Section VII.

Fig. 1. A heterogeneous federated learning training round in a mobile
network, where the clients complete the training immediately and the server
aggregates asynchronously.

II. RELATED WORK

Inspired by the protection of data privacy, the concept of FL

was introduced in [12]. FL allows clients to train on mobile

devices, and aggregates the global model by uploading the

trained parameters to avoid privacy leakage.

Recently, optimizing the FL communication delay was

cencerned by selecting gradient values of uploading. The focus

of this strategy was not to upload the entire updates while to

upload part of the updates according to a certain strategy in

each communication round. Eliminating the sparse value in

the updating values was applied in [13]. The latter proposed

to select the updating gradient values based on the training

loss value of different rounds, and established a weight table to

optimize the selected gradient values. However, the simulation

results showed that the algorithm was only applicable to i.i.d

datasets yet the performance at non-i.i.d (i.e., heterogeneous

of clients) datasets was unestablished. The optimization of

correlation between gradients was studied in [14], which

selected gradient values for uploading with fixed threshold

correlation values. Unfortunately, the limiting section of clients

who discontent the relative threshold was not applicable to real

scenarios, which reduced the clients quality of experience and

diversity of datasets.

For deploying FL in MEC [15]- [17], we mainly focus

on the optimization of the delay (e.g., training time and

transmission time) and energy (e.g., training energy and trans-

mission energy) consumption. The optimization of training

time and energy consumption was discussed in [18]- [20],

which considered minimizing the FL energy and time con-

sumptions through resources (e.g., client’s CPU frequency and

communication bandwidth) allocation under the premise of the

global model convergence. Although distinctive opinions were

studied in the literature as stated above, they did not consider

the impact of client training accuracy when MEC and FL were

combined. The challenges in optimizing FL and MEC was

that analytically connects the total energy and delay with the

accuracy of the local client training and the convergence rate

of the global model.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3298787

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 27,2023 at 15:24:57 UTC from IEEE Xplore.  Restrictions apply. 



3

Fig. 2. Federated semi-asynchronous model design learning algorithm block
diagram in a mobile edge network.

The key point of the FL algorithm is uploading the gradient

values to the aggregation server for averaging. The optimiza-

tion of transmission time was studied in [21]- [23], although

different methods (e.g., convex optimization) were used to

optimize the transmission time. However, they were all based

on the strategy of synchronous updates. The waiting time

(e.g., client disconnect and resource shortage) caused by the

synchronous update strategy was unavoidable.

To address the above problem, we analyze how the charac-

teristics (e.g., the number of clients selected K and the number

of local iterations E) of FL affects the energy consumption, the

local training time and the global model convergence rate. We

theoretically analyze how to select useful gradient information

(i.e., reduce the amount of datasets that need to be uploaded) to

accelerate the convergence rate of the global model. Besides,

a semi-asynchronous updating model was used to minimize

the delay and energy consumption at transmission. The block

diagram of the proposed algorithm is shown in Fig. 2.

III. FL MODEL OPTIMIZATION DESIGN

In this section, we concisely introduce Federated Learning.

According to the observation results, a direction based update

algorithm is proposed on the basis of the traditional FL

algorithm. The complete step is given in Algorithm 1.

A. Federated Learning

Generally, FL contains two main components: the dataset

owners (e.g., participants) and the global model (e.g., FL

aggregation server), respectively. Let N = {1, ..., U} indicates

the set of datasets clients, and Dk represents a whole dataset

of training data samples of client k. The process of FL can be

roughly divided into the following processes

• Step I (Initialization): Aggregation server broadcasts the

global model parameters W 0
G to the clients participating

before training.

• Step II (Local model training): After getting the param-

eters, the clients carry out local training (e.g., stochas-

tic gradient descent) to obtain trained parameters wt
k.

Through local iterative optimization, the optimal local

parameters is given by

wt∗
k = argmin

wt
k

f(wt
k), (1)

where wt∗
k and wt

k represent local model parameters

and optimal local parameters, respectively .Subsequently,

parameters wt∗
k are uploaded to the server.

• Step III (Global model aggregation): On the server side,

the synchronous update strategy is applied to obtain new

global parameters W t
G.

W t
G =

1∑
k∈N Dk

N∑
k=1

Dkw
t
k. (2)

The local clients communicate with the server for many rounds

to obtain the desired accuracy of the global model. Currently,

the widespread and classical algorithm for aggregating the

uploaded parameters is the FedAvg algorithm proposed in [6],

which calculates the weighted average method to update the

global model.

B. Key Insights

In FedAvg, the update of the global model depends on

the weighted average of the gradient values uploaded by the

clients participating in the training. Normally, partial uploaded

gradient values incapably accelerate the convergence of the

global model. When the global server executes as shown in

(3), meaningless gradient parameters interfere the convergence

rate of the model. The convergence of federated learning has

been proved in [6]. The important priori conditions in the proof

are that the variance of the stochastic gradients in each client is

bounded and the expected squared norm of stochastic gradients

is uniformly bounded.

From [6], the variance of stochastic gradients can be ex-

pressed as

E‖∇fk(w
t
k, ξ

t
k)−∇fk(w

t
k)‖2 ≤ δ2k. (3)

The expected squared norm of stochastic gradients is given

by

E‖∇fk(w
t
k, ξ

t
k)‖2 ≤ G2. (4)

where E represents a mathematical expectation. ‖∗‖ represents

square norm. δ2k and G2 represent upper bound of difference.

∇fk(w
t
k, ξ

t
k) represents gradients values under datasets ξtk.

The above two formulas show that the modulus of the

gradient and gradient divergence can be measured numerically

in terms of the convergence of the analytical model.

C. Algorithm Based on Gradient Direction Analysis

Based on the local SGD and FedAvg [22], we prove the fea-

sibility of the screening algorithm. After receiving the global

model parameters, the local model parameters is calculated by

wt
k = wt−1

k − η∇fk(w
t
k, ξ

t
k). (5)

where η represents learning rate. For the convenience of ex-

pression, we use character ϑk := −η∇fk(w
t
k, ξ

t
k) to represent

the latter part. From the above formula, the variation of wt+1
k is

determined by the ϑk. Based on this observation, the design of

the algorithm is to pick the gradient values that accelerates the

convergence of the global model. The complete proof process

is given in Appendix A.
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Algorithm 1 FL Gradient Selection.

Input global model WG and the global gradient values ϑG

loop k = 1, 2, 3, ...K for each epoch

Using (5) to update local gradient values and record

the loss values

loop τ = 1, 2, ...max for local training iteration

if loss values decrease

Execute (7) softly update gradient

end if
if τ = max

Using (8)(9) select the gradient values that

meets the requirements

end if
end loop

end loop
Iteration terminates and output gradients.

D. Algorithm Design

Inspired by the analysis in [6], the average gradient direction

of K clients can be used as the parameters of the global model.

To obtain a fixed precision ε, the round of communication is

given by

R = O
[
1

ε
((1 +

1

K
)EG2 +

Γ + G2

E
)

]
, (6)

where Γ typically represents the differences between clients

non-i.i.d datasets. O represents equivalent order of magnitude.

E represents the number of iterations.

We use a soft update to track the parameters of the global

model after each local training to expedite the convergence of

the global model.

∇f t
new,k(w

t
k, ξ

t
k) = μ∇fk(w

t
k, ξ

t
k)+(1−μ)∇F (W t−1

G ). (7)

where μ represents a soft update parameter value. ∇F (W t−1
G )

represents a gradient value of the global model at time t− 1.

In the reverse update phase, we pick out the gradient values

consistent with the gradient direction of the global model. The

relevance of the local update ϑk with respect to the global

update ϑG are calculated by

ϑk = −η∇fk(w
t
k, ξ

t
k) (8)

ϑG = −η∇F (W t−1
G ) (9)

where ϑk indicates the size and direction of the update of

the current user gradient values. ϑG represents the vector

direction of global model parameters. Generally, local gradient

parameters and global gradient parameters are characterized as

two-dimensional parameters.

D(x,y)(ϑk, ϑG) =

{
1, sgn(ϑk

(x,y)) = sgn(ϑG
(x,y))

0, sgn(ϑk
(x,y)) �= sgn(ϑG

(x,y)),
(10)

where D represents the different gradient directions table be-

tween the clients model and the global model. sgn() represents

a symbolic function.

During the local training, the gradient table is established

by comparing the positive and negative values of the local

and global updated gradient values. The positive and negative

gradient values reflect the directions of the weight update,

and the gradient values with different directions are set to

be zero. The gradient table values represent the relevance of

the current position during the update process. The gradient

values consistent with the global model direction are given by

wt
k = wt−1

k + Diϑk. (11)

IV. LOCAL TRAINING SYSTEM MODEL AND PROBLEM

FORMULATION

In the previous section, we established a weight table to

remove invalid gradient values. In FL, distributed users upload

gradient values to the server for aggregation. When we jointly

consider MEC-FL, removing the invalid gradient value can

reduce the transmission energy consumption. In this section,

we analyze the training time and energy consumption of local

distributed training in detail. Compared with previous work,

we consider the impact of the local training accuracy on the

energy consumption and delay. Finally, we propose the FL

energy and time weighted sum optimization problem.

A. Computation Model

Despite that some previous work verified the effectiveness

of FL, the optimization of the energy consumption and time

were still required. The total cost of FL in the training phase,

displayed in Fig. 1, involves the training time and the energy

consumption.

Let jk express the computation capacity of client k, which

is measured by the number of CPU cycles per second. The

computation time at client k needed for the data processing is

calculated by

T com
k =

CkDk

jk
, ∀k ∈ K, (12)

where Ck (cycles/sample) is the number of CPU cycles

required for computing one sample dataset at client k. Dk

represents the dataset volume. According to [24], the energy

consumption for computing the total number of CkDk CPU

cycles at client k is calculated by

Ecom
k = κCkDkj

2
k, ∀k ∈ K. (13)

where κ represents the battery capacity constant.

Under the above formulae, the total consumption of the local

client k during training one round can be expressed as

Ccom
k = σT com

k + (1− σ)Ecom
k . ∀k ∈ K. (14)

B. Local Training Accuracy and Problem Formulation

1) Local Training Accuracy: When the FL is deployed in

the MEC, the training accuracy of the global model and the

accuracy of the local model affect the training time and energy

consumption. Previous works [18], [20] have considered the

impact of the global model accuracy on the transmission time

and energy consumption. However, the local training accuracy

was not considered.

From Fig. 1, we can observe that the client’s training time

affects the subsequent transmission. When the training time is
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too long, the client is regarded as disconnected, which affects

the aggregation of the global model.

In order to consider the influence of the local client training

accuracy (i.e., 
) on FL, we utilize the convergence result in

[25]

T (
,E,K) =
1




(
1

2
+

1

2

√
1 + 
(1 + E + E2K)

)
, (15)

where T represents the total number of the SGD. From the

above formula, we can conclude that the training rounds

required to achieve the desired accuracy (i.e., 
) are related

to the number of iterations (i.e., E) and the number of clients

(i.e., K) selected.

2) Problem Formulation: We target is to minimize the

training time and the energy consumption while ensuring

convergence. We transform the problem into the following

P1 : min
jk,E,K,�,R

R∑
r=1

K∑
k=1

Ccom
k T (
,E,K) (16)

s.t. 0 ≤ jk ≤ jmax, ∀k ∈ K, (17a)

0 ≤ 
 ≤ 1, ∀k ∈ K, (17b)

R ≥ 1, E ≥ 1, R, E ∈ Z
+, (17c)

1 ≤ K ≤ N , K ∈ Z
+. (17d)

We note that the optimal solution of problem P1 is affected

by E and K, and these parameters affect the accuracy (i.e., ε) of

the global model. To ensure the accuracy of the global model,

we utilize the convergence result [6] to rewrite the problem as

P2 : min
jk,E,K,�,R

R∑
r=1

K∑
k=1

Ccom
k T (
,E,K) . (18)

s.t. 0 ≤ jk ≤ jmax, ∀k ∈ K. (19a)

0 ≤ 
 ≤ 1, 0 ≤ ε ≤ 1, ∀k ∈ K. (19b)

E ≥ 1, 1 ≤ K ≤ N , K,E ∈ Z
+. (19c)

R ≤ 1

ε

((
1 +

1

K

)
EG2 +

G2 + Γ

E

)
, R ∈ Z

+.

(19d)

Obviously, P2 is an integer nonlinear programming problem,

and the optimal solution is related to parameters (e.g., E, K,

R), which is difficult to infer an exact expression. In the

following section, we verify the relationship between P2 and

the hyperparameters.

C. Theoretical Verification

In this section, we analyze the impact of different superpa-

rameters on the accuracy of the global model.

• Impact of Γ: Inspired by [6], Γ is used for quantify the

degree of non-i.i.d (i.e., clients heterogeneity), which is

defined as

Γ = F (WG)
∗ −

∑N
k=1

pickkf(w
t
k)

∗, (20)

where F (WG)
∗ and f(wt

k)
∗ indicate the minimum loss

values of the global model and clients model, respective-

ly. pickk expresses the probability of the client selection.

If the dataset is non-i.i.d, Γ is non-zero, with its val-

ue reflecting the heterogeneity of the data distribution.

Through the simulation results, we verify that it is gen-

erally a positive number and depends on the sampling

plan.

• Impact of K: From the constraint of P2, we can conclude

that the K value may affect the convergence rate, which

is included in O
(

EG2

K

)
. Different values of K in the FL

control the number of clients participating in the training.

Intuitively, a larger K accelerates the convergence rate.

However, the latter increases the amount of heteroge-

neous datasets, and reduces the convergence rate. The

reason for this result is that the global model needs to

trade-off the impact caused by the heterogeneity of the

dataset, which leads to the stagnation of updates. The

subsequent simulation results also confirm our analysis.

• Impact of E: First, we discuss the influence of E on the

communication rounds, and derive the exact expression.

Theorem 1. The optimal solution E∗ of problem P2 satisfies

E∗ =

√
G2 + Γ

G . (21)

This verifies our proof in algorithm 1, which partial gradi-

ents altered does not influence the convergence. We give the

proof in Appendix B.

D. Solving Problem P2

To solve P2, which is a non convex problem with strong

coupling between parameters, we propose to apply deep rein-

forcement learning algorithm. The reason for this is that: 1) we

incapably obtain the prior knowledge of clients, which causes

heuristic algorithms impossibly. 2) it is possible to deploy deep

neural networks on the client side. 3) for NP-hard problems,

conventional heuristic algorithms cannot obtain a solution in

a polynomial time complexity. Furthermore, the complexity

increases as the number of clients increases. In this section,

we first introduce the DDPG algorithm, and apply it to solve

the problem of minimizing the energy consumption and delay.

1) Deep Deterministic Policy Gradient: DDPG is a deep

deterministic strategy gradient algorithm, which is proposed

to solve the problem of continuous motion control. DDPG

optimizes agent policies through a series of agent environment

interactions. Generally, it models the problem as MDP, which

means that obtains the state space S and the action space A,

the agent aims to maximize the performance objective function

and iteratively optimizes its strategy π. Through multiple

rounds of interactions, the target of the agent is to maximize

the expected reward. The expected reward is expressed as

Rt =
T∑

t=1

γr (st, at) , 0 < γ < 1, (22)

where r (st, at) indicates the reward at t slot state and action.

γ represents the attenuation factor. The DDPG contains two
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types of networks, namely, policy network and critic network.

The former outputs the action according to the results of the

interaction with the environment, and the latter critics the

action according to the Q values. For the policy network, with

the deterministic policy π, which aims to maximize the Q
values. Then, we have

Qπ (st, at) = E [r (st, at) + γQπ (st+1, at+1)] . (23)

The critic network guides the policy network by minimizing

the experience loss function, according to [26], which can be

written as

L (ω) = E (yt −Qω (st, at|ω))2 , (24)

yt = r (st, at) + γQẃ (st+1, π (st+1|ζ́)) . (25)

where ẃ and ζ́ parameters represent the target critic network

and the policy network, respectively, which are used to fix

network parameters.

Algorithm 2 Soft Update Based on DDPG Algorithm.

Step 0 : Initialization.
Randomly initialize critic network Q(s, a|ω) and policy

network π(s|ζ)
Initialize target network ώ and ζ́
Initialize replay buffer B.

Step 1 : Training.
loop episode = 1, 2, 3, ...max for each epoch

Select action at = π(st|ζ) + φ according to policy

and exploration noise;

Execute action at and observation st to obtain;

reward rt and new state st+1;
Store information (st, at, rt, st+1) in B;

Sample random mini-batch from B;

Execute (23) to obtain expected reward;

According to (22) minimize loss;

end loop
Step 2 : Updating.

Update policy network using the sampled policy

gradient;

∇L(π(ζ)) =
1

N

∑
i

∇Q(si, π(ζ))∇π(si|ζ).

Soft update target network parameters;

ώ = μω + (1− μ)ώ
ζ́ = μζ + (1− μ)ζ́

Iteration terminates and output reward.

2) Algorithm Design Based on DDPG: We map the client’s

initial state to the environment, which is used to interact with

the agent to obtain the state and reward of each time slot.

The MEC server as an agent to interact with the environment

obtains the state values (e.g., datasets and local client training

accuracy 
), which reflects the heterogeneity among clients.

Based on the previous analysis, we set the states values as

Si∈K = (Ci,Di, 
i,Γi) , (26)

where Ci is the number of CPU cycles required for computing

one sample data. Di represents the number of tasks that a

client needs to upload. 
i indicates the client’s local training

accuracy. Intuitively, different parameter’s values map to dif-

ferent client’s states.

Immediately, we input the state’s values into the policy

network as the input values. To maximize the Rt in (20),

the strategy π iteratively is optimized, and the action values

of the policy network is conceived as

A ⊆K
k=1 {a1, a2, ..., ak|ak = π(sk|ζ)} , (27)

where ak means that the CPU frequency with client k during

the training, which can be used as a factor to adjust the training

time and the energy consumption.

In order to find the optimal solution of the P2 problem, we

set the reward in the DDPG algorithm as P2 problem. The

reward function Rt is given by

Rt = − min
jk,E,K,�,R

R∑
r=1

K∑
k=1

Ccom
k T (
,E,K) . (28)

where the reward Rt (optimal energy) is obtained by the

appropriate action and different client’s states. The solution of

P2 problem corresponds to the action of the network output.

The complete steps are illustrated in Algorithm 2.

V. SEMI-ASYNCHRONOUS UPDATE MODEL DESIGN

In the previous section, we applied the DDPG algorithm

to optimize the training time of clients. The reason for this is

that the heterogeneity of users leads to a large difference in the

training time, which leads to the users dropping. Optimizing

the client training time can reduce the problem that users can’t

participate in aggregation due to resource constraints.

Most of the previous work has considered synchronous

update strategy, which undoubtedly leads to waste of the

energy consumption. In this section, we first formulate the

resource allocation to optimize the transmission time and

energy consumption. Besides, a semi-asynchronous update

model is established, and it is proven that it has a better

convergence effect than the synchronous model.

A. Transmission Model and Problem Formulation

We assume that the local FL tasks communication adopts

the orthogonal frequency division multiple access (OFDMA)

technology. According to the designed semi-asynchronous

model, which can upload parameters directly after training.

The uplink rate of client k is given by [27]

�k = ρkB log(1 +
pk�

2
k

N0
), ∀k ∈ K, (29)

where ρk ∈ [0, 1] is the bandwidth allocation ratio with client

k. B represents the bandwidth resources. Furthermore, pk and

�k indicate client transmit power and the instant channel gain,

respectively. N0 represents a white gaussian noise.

The transmission delay between client k and a base station

on the uplink is given by

Tk =
Lk

�k
, ∀k ∈ K, (30)
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Fig. 3. A typical iteration round of the update procedure difference between synchronous and semi-asynchronous: i) synchronization needs to wait for all
users to upload after training. In semi-asynchronous mode, users upload directly after training, ii) the former update requires the gradients of K users, however
the latter only needs the gradients uploaded at the current moment.

where Lk is uploading gradient value. According to the above

formulae, the total consumption of the local client k during

the transmission can be expressed as

Ck = pkTk =
TkN0

�2k

(2
Lk

ρkBTk − 1), ∀k ∈ K. (31)

Our goal is to minimize the energy consumption and delay

during transmission. The server allocates the bandwidth be-

fore each round of transmission, and fixes it throughout the

round. Therefore, the minimization of the energy consumption

problem can be expressed as

P3 : min
ρk,Tk

K∑
k=1

Ck (32)

s.t.

K∑
k=1

ρk = 1, ∀k ∈ K, (33a)

0 ≤ ρk ≤ 1, ∀k ∈ K, (33b)

0 < Tk ≤ Tmax, ∀k ∈ K. (33c)

To solve the above problem, the base station minimizes the

transmission energy consumption and delay by determining

the bandwidth allocation. Here, we loosen the time require-

ment, because clients do not need to wait for other clients but

only need to meet that the transmission time is less than the

maximum endurance time.

B. Solving the Optimization Problem P3

In this subsection, we describe some properties of the

optimization problem P3. Furthermore, we propose a roulette

strategy with reducing the search complexity to solve P3.

Obtaining the optimal ρ∗ and T ∗ is displayed in Algorithm

3.

1) Characterizing Problem P3:

Theorem 2. Problem P3 is strictly biconvex.

proof : For any 0 < T ≤ Tmax, We have

∂2C
∂2T

= 2
1

ρBT
ln 2N0

T 2B�2ρ

[
(L − 1)

2 ln 2N0L
T 3�2B2ρ2

]
> 0.

Similarly, for any 0 < ρ < 1, we have

∂2C
∂2ρ

= 2
L

ρBT
ln 2N0L
B�2

[
2ρBT + ln 2L

ρ4BT

]
> 0.

We conclude that P3 is strictly biconvex.

Functions with biconvex properties can make use of search

algorithms such as alternating search algorithms to achieve

guaranteed optimal solutions. However, the feasible solution

of the P3 problem is a real number domain, which undoubtedly

increases the complexity of the search. Based on this, we

design a roulette strategy to reduce the search complexity.

2) Algorithm Design: The idea of the roulette strategy is

that the more valuable individuals are retained with a higher

probability.

• Enhance the individual: Each individual corresponds to a

set of feasible solutions, which obtains the corresponding

cost. We map the individual to the corresponding proba-

bility.

ratioi =
Ci∑M
i=1 Ci

. (34)
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Algorithm 3 Roulette Strategy.

Step 0 : Initialization.
Random Initialize M feasible solution sets X0

Step 1 : iteration.
loop t = 1, 2, 3, ...max for each time slot

loop i = 1, 2, 3, ...M for local training iteration

Using (24) to calculate the energy consumption

of the corresponding solution set;

Execute (25),(26) mapping energy consumption

values of different solution sets to different

probabilities;

Implement (27) generates better performing

solution sets;

Execute ε greedy strategy;

xi =

{
xi, probability(1− ε).

xi = xi +N0, otherwise.

end loop
end loop
Iteration terminates and output (T ∗,ρ∗).

csi =
M∑
i=1

ratioi. (35)

where Ci represents a group of feasible solutions. We

replicate more individuals, and produce more derivation

of new individuals as given by

new(x) ⊆M
i=1

{
old(xi), random(i) < cs(i),

i = i+ 1, otherwise.
(36)

• Update the individual: To avoid getting stuck in the local

optima, we use ε greedy strategy to explore different

solution sets, which solve the exploration-exploitation

dilemma.

3) Semi-Asynchronous Update Model: To solve the in-

evitable waiting problem caused by synchronous update, as

displayed in Fig. 3, we discuss a single client execution FL.

In the t aggregate phase, the server accepts the trained model

wt
k from any client, and updates the global model by weighted

averaging

W t = (1− α)W t−1 + αwt
k, (37)

where α ∈ (0, 1) is the mixing hyperparameter. Based on

the semi-asynchronous aggregation formula, the difference

between synchronous and semi-asynchronous reflects in the

quantity of clients participating in the average weight, which

affects the direction of the global parameters.

Corollary 1. The trade-off α on the convergence rate is given
by
a) 0 < α < 1

2 :
The deflection angle θ gradually increases, and the weight

of the global model parameters in the previous round is larger.
b) 1

2 < α < 1 :
The deflection angle θ gradually decreases, and the weight

of the local model parameters of updating is larger.
c) α = 1

2 :

The deflection angle is the largest. The global model param-
eters of the previous round and the uploaded client parameters
have equivalent impact on the global model parameters of the
next round.

We give the proof in Appendix C. Intuitively, the effect

of reducing the quantity of clients participating in the weight

update is neutralized by the adjustment of α.

VI. SIMULATION RESULTS AND ANALYSIS

In this section, we assess the algorithms designed for each

problem. We first introduce the simulation settings, and present

the experimental results and analyzes.

We evaluate our results on the real datasets (e.g., MNIST).

For the non-i.i.d established datasets, following the identical

settings in [5], which limits each client only to have part of

the datasets.

A. Simulation Algorithm 1

1) Simulation Settings: We used the MNIST datasets for

experiments. We divided the 60000 data samples into N =
100 edge devices with the non-i.i.d dataset. Each device

contains 600 unbalanced samples and the corresponding labels.

For all simulation, we first randomly initialize the network

parameters W0, and set up a local training mini-batch b = 30.

In each local training round, randomly selects K clients to

execute E times local training.

2) Sampling Scheme: Intuitively, different clients selection

schemes reflect the heterogeneity of datasets distribution. For

the sampling scheme, we follow a similar setup in [6], which

uses random sampling and uniform sampling, respectively.

• Scheme I: Assuming that N contains a subset of K
randomly selected with replacement according to the

sampling probabilities pick1, ..., pickK .

• Scheme II: Assuming that N contains a subset of K
uniformly selected from N without replacement. Assume

the data is balanced in the sense that pick1 = ... =
pickK = 1

N .

3) Benchmark Settings: As to incarnate the performance

of the optimization algorithm, we set up three baselines for

comparison displayed in Fig. 4.

• Benchmark 1: Standard federal aggregation algorithm in

[5], which is widely referenced in the literature. The main

idea is that uploads all the gradient values, and calculates

the average values as parameter of the global model.

• Benchmark 2: Existing according to random weights up-

date strategy in [13], which selects the uploaded gradient

values by establishing the weight table. First, partial

gradient values are randomly selected for training, and

records the values change of the corresponding position.

During the update phase, only the gradient value of the

heavy coordinates is uploaded.

• Benchmark 3: Existing according to the correlation re-

flected in [14], which allows clients with large correla-

tions to participate in the aggregation while clients with

small correlations do not participate in the aggregation.
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Fig. 4. Accuracy and data volume for different update strategies and sampling scheme with MNIST datesets. (a) Under the same setting, uniform sampling
leads to greater heterogeneity of datasets. (b),(d) Our proposed algorithm has a faster convergence rate under both schemes. (c),(e) The proposed algorithm
can use less upload data to achieve a faster convergence rate.
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Fig. 5. Optimizing local training time and energy consumption based on DDPG. (a),(b) The effect of K value on the test accuracy and experience loss value
is small. (c) Our proposed algorithm optimize the training time of clients through resource allocation. (d),(e) The proposed algorithm optimization of time
and energy consumption is better than other strategies.

Fig. 4(a), (b) demonstrates the results of the proposed

algorithm. It is clear that it has a faster convergence rate than

other Benchmark algorithms under both sampling scheme. We

proposed algorithm pick out gradient values that is conducive
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Fig. 6. Total transmission time for different scheduling strategies and semi-asynchronous update model training performance. (a) Our proposed method
converges faster and more accurately than synchronous update. (b) Influence of parameter α on the convergence of semi-asynchronous models. (c) The
proposed algorithm optimization of transmission time is better than other strategies.

to accelerate the convergence of the global model.

The superiority of the the proposed algorithm does not only

reflect in the acceleration of convergence but also reduces

the amount of datasets that need to be uploaded, which is

shown as Fig. 4(c), (e). The reason for this phenomenon is

that uncorrelated gradient values are eliminated to reduce the

amount of uploaded datasets.

The gradient value selection method proposed in this paper

eliminates sparse values and some gradient values that are

different from the updating direction of the global model,

which not only accelerates the convergence speed of the global

model but also reduces the energy consumption and delay of

datasets uploading.

B. Simulation Algorithm 2

1) Simulation Settings: For DDPG experiments, we initial-

ize the parameters of the policy network and learning rate

with 0.001 and 0.01, respectively. In each episode, clients

participating in the training calculate the cost and each result

is averaged over 50 episodes. In order to better fix the network

parameters, the parameters of the two networks are updated

in each 100 episodes.

2) Benchmark Settings: Fig. 4 compares the performance

of the proposed algorithm with the following two benchmarks

about the total learning time and energy consumption.

• Random: The clients randomly select the working fre-

quency of the training, and calculate the current energy

consumption and time.

• Greedy: Only chooses the parameters of the minimum

energy consumption, without considering the constraints

of the local training accuracy and the global model

accuracy.

Fig. 5(a), (b) validates our analysis that the hyperparameter

of K have little effects on the accuracy and empirical loss value

of the global model. Fig. 5(c) demonstrates that the proposed

algorithm optimizes the clients training time through resource

allocation, which avoids the disconnection problem caused by

the synchronized model.

Fig. 5(d), (e) demonstrates that our proposed algorithm

achieves the resource optimization better than the two bench-

marks. The proposed algorithm allocates resources according

to the heterogeneity of clients, and minimizes the energy

consumption and delay.

By combining the hyperparameters in FL with the op-

timization of energy consumption and delay in MEC, the

DDPG algorithm designed in this paper optimizes the system

energy consumption and delay without reducing the accuracy

of the global model. Different sampling schemes and statistical

challenges are considered.

C. Simulation Semi-Asynchronous Update Model

1) Simulation Settings: For experiments, consider an OFD-

MA system where the bandwidth B = 1 MHz, channel gains

�k are modeled as independent Rayleigh fading with average

path loss set as 10−4. The noise variance is N0 = 10−8 W/Hz,

the number of CPU cycles for computing one sample data and

task size, {Ck} {Dk}, following the uniform distribution in

the range of [10, 30] and [5, 8] MB, respectively.

2) Benchmark Settings: To evaluate our proposed semi-

asynchronous update strategy, we compare it with two existing

synchronous update schemes.

• Benchmark 1: Existing scheduling strategy in [21], which

client occupies part of the bandwidth in time slot t, and

the aggregation server adopts synchronous updates. This

means that it needs to wait for all clients to complete the

upload before updating.

• Benchmark 2: Establishing scheduling strategy in [20],

which client occupies all the communication resources at

time t, and uploads the parameters in turn. When all client

uploads parameters, the aggregation server performs the

update operation.

The performance gap between the semi-asynchronous up-

date model and the synchronous update model are displayed

in Fig. 6(a). The reason for this observation is that, as

heterogeneous datasets increase, the parameters uploaded by

the clients only contain part of the information, and oversim-

plified averaging operation unable to help the global model to

converge quickly.

Fig. 6(b) shows the parameter α on the convergence rate

of semi-asynchronous models. Intuitively, larger α leads to

a better convergence rate. The reason for this observation

is that, as α increases, client’s parameters occupy larger
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proportion during the soft update. The asynchronous upload

mechanism ensures that the global model only needs to trade

off a portion of the heterogeneous datasets, which means that

there is no stagnation of the update due to a large amount of

heterogeneous datasets.

Fig. 6(c) depicts the transmission time in different schedul-

ing strategies, which also reflects the difference between

synchronous update strategy and asynchronous update strat-

egy. The semi-asynchronous update model proposed in this

paper solves the synchronization waiting time caused by users

heterogeneity. By controlling the regulator α, the convergence

speed of the global model parameters can be changed, and the

delay can be minimized without reducing the accuracy of the

global model.

VII. CONCLUSION

In this paper, we studied the energy consumption and delay

issues for federated learning in mobile edge networks. We

proposed a novel method of selecting gradients based on

gradient directions to solve the problem of massive uploaded

datasets, and analyze the rationality of the selection algorithm.

To improve the quality of the user experience, we considered

the client’s training accuracy in optimizing the local training

energy consumption and delay, and analyzed the impact of

different parameters (e.g., K, E and Γ). We also proposed a

semi-asynchronous update strategy to avoid the waiting time

caused by the synchronization, and analyzed the influence

of different soft update parameters (e.g., α) about the global

model update direction. Experimental results validated our the-

oretical analysis and revealed the effectiveness of the proposed

algorithm.

APPENDIX A

PROOF OF PICK ALGORITHM

To prove by SGD and FedAvg, we first analyze the gradient

direction requirements of the SGD in the case of convergence.

Our object is to find a suitable 
∗ to satisfy f(
1) > f(
2) >
... > f(
k). We rewrite the target function as


∗ = argmin
�k

f(
k). (38)

Assuming that the solution is found through the SGD at

time t, the Taylor expansion of the difference from the optimal

solution can be expressed as

f(ωt, βt)− f(ω∗, β∗) =
∂f(ω∗, β∗)

∂ω∗ (ω − ω∗)

+
∂f(ω∗, β∗)

∂β∗ (β − β∗).
(39)

The problem is transformed into finding the minimum value

of the empirical loss function. Now, when the value on the

right side of the equation is zero, the parameter at t is

the optimal solution. We transform the form of vector inner

product into the expression of a gradient update.⎡
⎣ ω∗

β∗

⎤
⎦ =

⎡
⎣ ωt

βt

⎤
⎦− λ

⎡
⎢⎣

∂f(ω∗,β∗)
∂ω∗

∂f(ω∗,β∗)
∂β∗

⎤
⎥⎦ . (40)

From the above formula, we get the expression of the

gradient update as follows.

wt+1 = wt − λ∇fk(w
t
k). (41)

ϑk = −λ∇fk(w
t
k). (42)

To obtain the optimal parameters, the direction of the

gradient affects the convergence rate. On this basis, we prove

that the global model still converges when the partial gradient

value is altered. ϑk(w
t
k) represents the changed values.

E‖ϑk(w
t
k)− ϑk(w

t
k)‖2 ≤ E‖ϑk(w

t
k) + ϑk(w

t
k)‖2 ≤ 4λ2G2.

(43)

The above formula shows that the direction of modifying

only part of the gradient still satisfied Lipschitz.

APPENDIX B

PROOF OF THEOREM 1

We first establish the functional relationship between com-

munication rounds and iterations.

R (E) =
1

ε

((
1 +

1

K

)
EG2 +

G2 + Γ

E

)
, (44)

For arbitrary E, we have

∂R
∂E

=
1

ε

((
1 +

1

K

)
G2 +

G2 + Γ

E

)
, (45)

∂2R
∂2E

=
2
(
G2 + Γ

)
E3

> 0, (46)

Similarly, for any 1 < K < N , we obtain the same

conclusion

∂2R
∂2K

=
2EG2

εK3
> 0, (47)

Since the domain of E and K is convex, we conclude that

R (E) is convex.

If let ∂R
∂E = 0, we have

1

ε

((
1 +

1

K

)
G2 +

G2 + Γ

E

)
= 0, (48)

E∗ =

√
K (Γ + G2)

(K + 1)G2
, (49)

In the reality scenario, thousands of clients participates in

FL, K 
 1, we have

E∗ =

√
G2 + Γ

G . (50)

Therefore, (19) can be obtained.
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APPENDIX C

PROOF OF COROLLARY 1

We first establish a functional relationship between weights

α and angles θ.

θ(α) = arccos

[
(1− α)W t−1αwt

k

|(1− α)W t−1αwt
k|

]
. (51)

For the convenience of the expression, we let

A = |(1− α)W t−1αwt
k|.

B = (1− α)W t−1αwt
k.

For any 0 < α < 1, we have

∂2θ(α)

∂2α
= −

[(
1− (

B

A
)2
)− 3

2 (1− 2α)BW t−1wt
k

A2

+
2W t−1wt

k

A

(
1−

(
(1− α)W t−1wt

k

A

)2
)− 1

2

⎤
⎦ < 0.

(52)

We conclude that θ(α) is a concave function.

∂θ(α)

∂α
=

1√
1−

(
B
A

)2 (2α− 1)W t−1wt
K

A
. (53)

Following, we let
∂θ(α)
∂α = 0, we have

Case 1: if α = 1
2 , θ(α) takes the maximum value, which

means the deflection angle is the maximum.

Case 2: if 0 < α < 1
2 ,

∂θ(α)
∂α < 0, which is a decreasing

function. The deflection angle decreases as α increases.

Case 3: if 1
2 < α < 1,

∂θ(α)
∂α > 0, which is an increasing

function. The deflection angle decreases as α decreases.

Therefore, α can trade off the value of the deflection angle,

which completes this proof.
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