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Abstract—Computing offloading optimization for energy sav-
ing is becoming increasingly important in low-Earth orbit (LEO)
satellite-terrestrial integrated networks (STINs) since battery
techniques has not kept up with the demand of ground terminal
devices. In this paper, we design a delay-based deep reinforcement
learning (DRL) framework specifically for computation offload-
ing decisions, which can effectively reduce the energy consump-
tion. Additionally, we develop a multi-level feedback queue for
computing allocation (RAMLFQ), which can effectively enhance
the CPU’s efficiency in task scheduling. We initially formulate
the computation offloading problem with the system delay as
Delay Markov Decision Processes (DMDPs), and then transform
them into the equivalent standard Markov Decision Processes
(MDPs). To solve the optimization problem effectively, we employ
a double deep Q-network (DDQN) method, enhancing it with an
augmented state space to better handle the unique challenges
posed by system delays. Simulation results demonstrate that the
proposed learning-based computing offloading algorithm achieves
high levels of performance efficiency and attains a lower total cost
compared to other existing offloading methods.

Index Terms—Computing offloading, satellite-terrestrial inte-
grated networks, system state delays in learning, deep reinforce-
ment learning.

I. INTRODUCTION

ADVANCES in satellite constellations are revolutionizing
internet access, which extends communication services

to every corner of the Earth, including underdeveloped areas
with limited infrastructure, like remote regions and oceans.
These developments have led to the construction of satellite-
terrestrial integrated networks which can connect numerous
edge devices. A groundbreaking aspect of satellite-terrestrial
integrated networks (STINs) is providing computational re-
sources through satellites, a paradigm shift that takes the low-
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Earth orbit satellite (LEOS) as new edge servers [1]. This
transformation not only improves communication capabilities
but also opens up new possibilities in global data processing
and management.

However, integrating advanced artificial intelligence (AI)
applications at the edge, linking end users with LEO satellites
and the cloud, poses significant new challenges. The inher-
ently distributed and dynamic nature of the edge environment
complicates such deployments, and the high computational
demands of AI applications limit their use on resource-
constrained edge devices. To overcome these obstacles, some
efforts have been directed towards offloading computationally
intensive tasks to cloud servers, edge servers, and LEO servers,
utilizing their processing power to manage the computational
load of sophisticated AI applications [2]–[5].

Deep reinforcement learning (DRL) has recently been em-
ployed to tackle the computation offloading challenges in
STINs [6]–[8], where the DRL agent interacts with the en-
vironment through a trial-and-error process, making decisions
based on the observable system states and receiving feedback
in the form of rewards and new states. However, practical
challenges arise due to the inherent network latency, compu-
tational bottlenecks, and the time required for task execution,
all of which introduce significant delays in the observable
states and decision execution [9], [10]. These delays force the
DRL agent to operate with outdated information, requiring it
to make effective offloading decisions based on past states
and actions [11]. The challenge lies in how to utilize this
outdated information to guide the agent in making optimal
decisions despite the inherent uncertainties. Although DRL
is increasingly applied in this context, existing studies often
overlook the impact of these delays, assuming that system
states and feedback can be obtained instantaneously. This gap
underscores the need for more realistic models that account
for the inevitable delays in DRL-based offloading decisions.

This paper introduces a flexible joint communication
and computation framework for STINs, designed to pro-
vide robust computing services to remote users through
edge/cloud/satellite integration. We propose an efficient com-
puting offloading approach that learns an optimal offloading
policy on-the-fly, aiming to minimize the energy consumption.
This takes into account the multidimensional network dynam-
ics, resource constraints, and system state/action delays. We
first formulate the computation offloading problem with sys-
tem state delays as stochastic delay MDPs (SDMDPs), demon-
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strating how to reduce these to MDPs without delays. We
then propose a model-free, delay-based reinforcement learning
approach to seek an optimal offloading mode. Finally, we
deploy a computing allocation algorithm on each edge server,
based on a multi-level feedback queue. To our knowledge, this
work is the first to study the computation offloading problem
in STINs with system state delays. It validates the feasibility
of STINs in supporting computation-intensive applications for
remote users and offers useful guidelines for remote computing
offloading.

The main contributions of the paper can be summarized as
follows.

• We introduce an innovative framework designed to en-
hance computing services in STINs. This framework
that integrates edge, cloud, and satellite technologies is
tailored to address the unique challenges of STINs, such
as resource constraints and system state delays. This
approach is particularly beneficial for remote users, who
typically face limited access to robust computing services.

• We formulate the computation offloading problem in
STINs with system state delays as SDMDPs. We demon-
strate how these processes can be effectively transformed
into simpler MDPs without delays. Building on this foun-
dation, we propose a model-free, delay-based reinforce-
ment learning approach to seek an efficient computing
offloading strategy aimed at minimizing the impact of
energy consumption. Additionally, we have developed a
multi-level feedback queue-based computing allocation
algorithm for each edge server, addressing a novel area
in the computation offloading domain and offering prac-
tical solutions for computation-intensive applications in
remote areas.

• The efficacy of our proposed approaches is rigorously
evaluated through extensive simulations. This evaluation
provides valuable insights into the practical applicability
and efficiency of our methods in real-world scenarios.

The remainder of the paper is organized as follows. In
Section II, we present the related work. Section III describes
the system model. In Section IV, the joint edge computing
allocation and computation offloading problem is formulated
and solved. Section V introduces the SDMDPs. Section VI
formulates the DRL-based solution. Section VII evaluates the
proposed approaches, and Section VIII concludes the paper.

II. RELATED WORK

In the realm of satellite-terrestrial integrated networks,
computation offloading methods play a pivotal role. Broadly,
these methods fall into two categories: mathematical-based
and intelligence-based approaches [12]–[15]. Central to this
discussion is the interplay between computation offloading and
resource allocation strategies, a key area of focus in network
optimization.

A. Mathematical Offloading Method

Satellite-terrestrial edge computing is conceptualized as a
three-tier architecture encompassing space, air, and ground,
with the ground tier also extending to marine or aquatic

environments. Specifically, the space tier primarily includes
low-earth orbit and geosynchronous (GEO) satellites. The
air tier encompasses various aerial vehicles like aircraft and
drones, while the ground tier comprises communication in-
frastructure, Internet of Things (IoT) devices, and vehicles. In
marine settings, vessels are commonly used, and underwater
sensors or servers can be deployed in aquatic environments.
Researchers primarily aim to optimize computation offloading
and resource allocation performance within this intricate,
integrated network [16]–[18]. This optimization is based on
network characteristics, with a focus on minimizing system
energy consumption and reducing the computing latency.

Researchers aim to optimize this complex network, focus-
ing on minimizing system energy consumption and reducing
computing latency, a task that involves balancing the unique
characteristics of each network tier. For instance, the ma-
jority of communication terminals in the terrestrial network
offload tasks to satellites using Ka-band wireless backhaul
connections, with the satellites then returning processed results
via either Ka-band or C-band connections [19], [20]. The
challenge lies in managing the computational workloads, espe-
cially given the dynamic nature of these networks. A notable
solution proposed involves using the Lyapunov framework for
optimizing the objective function [2], [19], [21]–[23].

Incorporating high-altitude aircraft into the network in-
troduces new complexities due to their variable speeds and
trajectories, which constantly change network topologies. Ad-
dressing these challenges, recent studies [3], [24]–[27] have
focused on optimizing the trajectory of unmanned aerial vehi-
cles (UAVs) and using iterative algorithms for more efficient
offloading and resource allocation.

Furthermore, cloud data centers have emerged as significant
players in this network, acting as communication relays for
remote users [4]. The computation offloading decision in this
context becomes a binary problem: to offload tasks either to
satellites or cloud data centers. This discrete and non-convex
problem has been transformed into a linear programming
problem for more effective resolution [4].

These studies provide a foundation for our approach in
this paper, offering insights into managing dynamic network
environments and leveraging the power of neural networks for
better generalization in addressing these challenges.

B. Intelligence Offloading Method

Traditionally, satellite-terrestrial integrated networks have
relied on objective functions resolved through optimization
algorithms. However, the advent of deep learning, particularly
supervised methods, has revolutionized this approach [28],
[29]. By training neural networks with data derived from
traditional methods, we can now obtain offloading decisions
and resource allocation values instantaneously, a significant
leap from the slower resolution of conventional techniques.

DRL has emerged as a powerful tool in this landscape. Cui
et al. [30] implemented a Double Deep Q-Network (DDQN)
for computation offloading alongside traditional algorithms
for resource allocation, addressing the challenges posed by
the dynamic nature of satellite coverage areas and user link
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Fig. 1. LEO-STIN scenario.

quality. Similarly, Zhang et al. [31] and other researchers [32],
[33] have explored various DRL-based methods to manage the
complexities of computation offloading and resource allocation
in these networks.

Tang et al. [5] emphasized a long-term performance strategy,
combining DRL for computation offloading with Lyapunov
optimization for resource allocation. This approach, also re-
flected in other studies [6], involves predicting network re-
source variations and developing online algorithms for more
accurate forecasting.

In applying digital twin technology to satellite-terrestrial
integrated networks, Ji et al. [7] identified a delay in updating
network status information but posited that DRL could address
this issue [8]. However, their focus was limited to the algorith-
mic perspective, omitting broader considerations of systemic
update delays. This phenomenon of state delay was similarly
observed in studies [9], [10].

Finally, our research builds upon these insights, particularly
focusing on the challenges posed by state delays within the
system. We use DRL for computation offloading, comple-
mented by traditional methodologies for computing resource
allocation, to navigate the complexities of satellite-terrestrial
integrated networks effectively.

III. SYSTEM MODEL

Consider a LEO-STIN scenario consisting of M low Earth
orbit satellites M = {1, 2, · · · ,m, · · · ,M}, N terrestrial base
stations (BSs) N = {1, 2, · · · , n, · · · , N}, K mobile users

K = {1, 2, · · · , k, · · · ,K}, and a cloud data center (CDC),
as illustrated in Fig. 1. Each mobile user handles k diverse
tasks which vary in computational requirements and can be
offloaded to BSs, CDC, LEO satellites, or locally. The network
operates in fixed time slots t ∈ {0, 1, 2, · · · , τ} where τ
represents the finite time horizon. The task from user k at time
t is represented as Λt

k = {stk, rtk, ctk, ztk,max}. Here, stk is the
data size, rtk is the feedback data size, ctk is the necessary clock
cycles for completion, and ztk,max is the maximum latency. To
simplify, we assume that ztk,max is sufficiently large to prevent
task failure due to timeouts.

The users can process the tasks locally or offload them
to the satellites, base stations, or cloud data center. The
transmission rate between satellites is assumed to be very
fast with negligible delay [38], [39]. Consequently, the tasks
need only to be offloaded to the nearest satellite based on its
current position. The offloading decision for user k at time t
is represented as X (t, k) ∈ {0,N , N + 1, N + 2}, i.e.,

X (t, k) =


0, processed locally,
N , offloaded to BSs,
N + 1, offloaded to LEOS,
N + 2, offloaded to CDC.

(1)

Here, N + 1 represents offloading the task to a satellite.
Since we ignore the delay between satellites, we choose the
most suitable satellite node from the LEOS set M based on
the location of user k [4].
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The offloading tasks can occur via the wireless backhaul
links. For the links between BSs and LEO satellites, the C-
band and Ka-band are utilized, respectively. Additionally, the
users can offload the tasks to the CDC through either LEO
satellites or BSs. The link between BSs and CDC is facilitated
by the ethernet, while the link between LEO satellites and
CDC uses the wireless backhaul links on Ka-band.

A. Communication Model

1) Terrestrial Communications: The achievable capacity by
user k with service of base station n over C-band can be
expressed by

Rn,k = ψkBC log2

(
1 +

pn,k|hCn,k|2
δ2

)
, (2)

where BC represents the total bandwidth in the C-band. The
factor

∑K
k=1 ψk = 1 indicates that ψk allocates bandwidth to

user k at BS n. The transmit power and noise variance are
represented by pn,k and δ2, respectively, while hCn,k indicates
the channel gain between user k and BS n.

The channel gain, hCn,k, is predominantly affected by the
Line-of-Sight (LoS) path is written by

hCn,k = ξd−α
k,n, (3)

where d−α
k,n is used for calculating the path loss between user

k and BS n. ξ is the unity channel gain at a reference distance
of 1 meter. The path loss exponent is denoted by α.

2) LEOS Communications: The capacity achievable by user
k when served by LEO m over the Ka-band is given by:

Rm,k = ψ̂kBKa log2

(
1 +

pm,k|hKa
m,k|2

δ̂2

)
, (4)

where BKa denotes the total bandwidth in the Ka-band. The
term

∑K
k=1 ψ̂k = 1 indicates that ψ̂k is a bandwidth allocation

factor for user k at LEO m. The transmit power and noise
variance are represented by pm,k and δ̂2. The channel gain
between user k and LEO m is hKa

m,k, defined as:

hKa
m,k = γd̂−β

k,m, (5)

which takes the path loss between user k and LEO m as a
function of their distance. The term γ corresponds to log-
normal distributed shadow fading, and β is the path loss
exponent.

The model in (4) also need calculate the achievable com-
munication capacity between satellites and cloud data centers
as well as between satellites and base stations.

B. Computing Model

This system includes various computing models: local com-
puting, base station server-aided computing, cloud data center
server-aided computing, and low earth orbit satellite edge-
aided computing. We adopt a partial offloading approach,
where tasks are either processed locally or offloaded to the
BS server, cloud data center, or LEOS edge.

1) Local Computing: For a task Λt
k partially processed

locally at time t, the computing time, Dt
k,loc, is given by:

Dt
k,loc =

ctk
fk
, (6)

where fk represents the computation capability of user k in
CPU cycles per second.

2) BS Server Computing: BS server computing includes
transmission latency and BS server computation time. Let
fn,max and fn,k denote the maximum CPU cycles at BS n
server for user k. Assuming equal uplink and downlink rates
[44], the total latency, Dt

k,n, is:

Dt
k,n =

stk + rtk
Rn,k

+
ctk
fn,k

. (7)

3) Cloud Data Center Computing: This model includes
transmission and execution time at the cloud data center.
Assuming infinite resources, the maximum CPU cycles f cloudmax

are utilized. Tasks can be offloaded through the base station
or directly via satellite. The total latency, Dt

k,cloud, is:

Dt
k,cloud = δ

(
stk + rtk
Rm,k

+
stk + rtk
Rm,cloud

+
ctk

f cloudmax

)
+ (1− δ)

(
stk + rtk
Rn,k

+
stk + rtk
Rn,cloud

+
ctk

f cloudmax

)
,

(8)

where δ ∈ {0, 1} indicates the offloading route: 0 for the base
station, 1 for satellite.

4) LEOS Edge Computing: LEOS edge computing consists
of transmission time and LEOS server execution time. Let
fm,max and fm,k be the maximum CPU cycles at the LEOS
server for user k. The total latency, Dt

k,m, is:

Dt
k,m =

stk + rtk
Rm,k

+
ctk
fm,k

. (9)

LEO satellites can collaboratively process tasks via inter-
satellite links (ISLs), especially under high offloading de-
mands, with minimal transmission delays [38], [45].

The offloading latency for user k at time t is:

Dt
k =


Dt

k,loc, if X (t, k) = 0

Dt
k,n, if X (t, k) ∈ N

Dt
k,m, if X (t, k) = N + 1

Dt
k,cloud, if X (t, k) = N + 2.

(10)

The total computing time can be calculated as

D =

τ∑
t=0

K∑
k=1

Dt
k (11)

where K represents the number of users.

C. Energy Model

This section details the energy consumption in various com-
puting scenarios, including local processing, BS processing,
cloud data center processing, and LEOS edge processing.
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1) Executing Energy: The power consumption for local
processing, denoted as pl, is assumed to be the same for all
users. The energy required for local processing is:

Et,exe
k,loc = pl

ctk
fk
. (12)

In LEOS edge processing, with a constant energy dissipation
rate pleo, the energy requirement is:

Et,exe
k,leo = pleo

ctk
fm,k

. (13)

For cloud data center processing, the energy dissipation rate
is pcloud, leading to:

Et,exe
k,cloud = pcloud

ctk
f cloudmax

. (14)

In BS processing, with an energy dissipation rate pbs, the
energy requirement is:

Et,exe
k,bs = pbs

ctk
fn,k

. (15)

The overall executing energy dissipation is determined by
the computing scenario:

Et,exe
k =


Et,exe

k,loc , if X (t, k) = 0

Et,exe
k,bs , if X (t, k) ∈ N

Et,exe
k,leo , if X (t, k) = N + 1

Et,exe
k,cloud, if X (t, k) = N + 2.

(16)

2) Transmitting Energy: The energy dissipation during
transmission depends on the destination of the data. For
transmission to the LEOS edge:

Et,trans
k,m = pk

stk + rtk
Rm,k

. (17)

For transmission to the cloud data center:

Et,trans
k,cloud = pcloudk ·

[
δ

(
stk + rtk
Rm,k

+
stk + rtk
Rm,cloud

)
+ (1− δ)

(
stk + rtk
Rn,k

+
stk + rtk
Rn,cloud

)] , (18)

where δ ∈ {0, 1} indicates the offloading route: 0 for the base
station, 1 for satellite.

For transmission to the BS:

Et,trans
k,bs = pbsk

stk + rtk
Rn,k

. (19)

The total energy dissipation for transmission is:

Et,trans
k =


Et,trans

k,loc , if X (t, k) = 0

Et,trans
k,bs , if X (t, k) ∈ N

Et,trans
k,leo , if X (t, k) = N + 1

Et,trans
k,cloud, if X (t, k) = N + 2.

(20)

Finally, the total energy consumption is calculated as [32]:

E = φ ·
τ∑

t=0

K∑
k=1

Et,exe
k +

τ∑
t=0

K∑
k=1

Et,trans
k , (21)

where K represents the number of users, φ ∈ (0, 1) is a factor
used primarily to balance the execution energy consumption
and the transmission energy consumption.

IV. PROBLEM FORMULATION

A. Objective Function

We aim at jointly optimizing the computation offloading
and resource allocation to minimize the energy consumption
under the user latency constraints. It involves the optimization
of offloading decision vector X (t, k), BS server computing re-
source allocation matrix FN , LEOS edge computing resource
allocation matrix FM, and bandwidth resource allocation
matrix P . Therefore, the optimization problem is formulated
by

P0 : min
{X ,FN ,FM}

E, (22a)

s.t. Etrans > 0, Eexe > 0, (22b)
fn,k > 0, fm,k > 0,∀n ∈ N ,∀m ∈ M,∀k ∈ K, (22c)

ψk ∈ (0, 1), ψ̂k ∈ (0, 1),∀k ∈ K, (22d)∑
k∈Kbs

ψk = 1, (22e)∑
k∈Kleo

ψ̂k = 1, (22f)

D ≤
τ∑

t=0

∑
k∈K

ztk,max, (22g)∑
k∈Kbs

fn,k ≤ fn,max,∀n ∈ N , (22h)∑
k∈Kleo

fm,k ≤ fm,max,∀m ∈ M, (22i)

X (t, k) ∈ {0,N , N + 1, N + 2},∀k ∈ K, (22j)

where Kbs and Kleo represent the users served by the BS and
LEO, respectively.

The constraints in P0 are detailed as follows: (22b) guar-
antees that the computation tasks are executed while (22c)
ensures that each task is allocated appropriate resources.
(22d), (22e), and (22f) represent that the allocated bandwidth
resources will not exceed the upper limit of BS or LEO. (22g)
indicates that offloading tasks is effective. (22h) and (22i)
respectively indicate that the computation resources allocated
to the tasks by the base station and satellite will not exceed
their total computation resources. (22j) means that the tasks
will be executed locally or offloaded to base stations or
satellites.

P0 aims to obtain the optimal values of X , FN , and FM

for users. Since the offloading decision variable X is discrete
in contrast to FN and FM which vary continuously and
dynamically, P0 is a mixed integer nonlinear programming
(MINLP) problem and it falls into NP-hard. Given the dynamic
and time-sensitive nature of networks, it is difficulty to achieve
an optimal solution through traditional computation methods
and the computational time is non-polynomial. To address this
issue, we will propose a solution method based on DRL as
follows.

B. Offloading Policy Model

We define the offloading policy model as SDMDP repre-
sented by ⟨S,A, PA, R,O,AC,C, γ⟩ in which the random
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variables represent the finite state space, available actions,
transition probabilities, rewards, delays in observation, action,
cost, and discount factor, respectively. In Section V, we
will convert it into a standard MDP to solve the offloading
challenge in P0 based on DRL.

C. Optimization of Computing Resource Allocation

Due to the dynamic computing environments and hetero-
geneous task requirements, the traditional computing resource
optimization methods are very challenging because they can-
not rapidly respond to the multi-dimensional characteristic of
P0. Inspired by the work in [37], we propose a novel com-
puting resource allocation algorithm, RAMLFQ, to optimize
the computing resource allocation for task offloading in BS
servers and LEOS edge computing. It can ensure good real-
time performance while taking into account the computing
resource requirements, priority, and resource limits of tasks.
We dynamically adjust the CPU resource allocation strategy
based on these factors. Formally, let Λt = {Λt

1,Λ
t
2, · · · ,Λt

K}
be the task served by the base station n with total computing
resource fn,max, in time slot t. Let ctk, ptk, f tn,k be the required
computing resource of the task Λt

k, the priority of the task
Λt
k, and the allocated computing resource in time slot t,

respectively. Note that the resource allocation strategy needs
to satisfy (22h). Then, the basic resource allocation for each
task can be defined as

fn,base =
fn,max

2|Λt| , (23)

where |Λt| is the number of tasks.
Similarly, the remaining CPU resources are defined as

fn,extra = fn,max − |Λt| · fn,base. (24)

Taking into account the priority of tasks and dynamic allo-
cation of CPU resources required by each task, the dynamic
resource allocation strategy for each task is defined as

f tn,k = fn,base

+min

(
ctk − fn,base,

fn,extra × (w1(p
t
k) + w2(Qk))∑K

k=1(w1(ptk) + w2(Qk))

)
,

(25)
where w1 and w2 are the weights of task priority and priority
queue, respectively.

We use a linear function as the weight parameter, i.e.,

w1(p
t
k) = a · ptk + b, (26)

w2(Qk) = c · k + d, (27)

where a, b, c, d ∈ R are weight coefficients and k ∈ Z+ is the
index of priority queue.

This algorithm includes a scheduling strategy that adopts
a time-slice round-robin system. Here, we define the time-
slice parameter according to (25). Except for the time-slice
round-robin scheduling strategy, this algorithm also aims to
ensure the real-time performance of tasks because it need be
implemented in all base stations and satellites.
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Fig. 2. The computation offloading process in a LEO-STIN scenario.
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Fig. 3. Graphical illustration of the problem of the LEO satellite-terrestrial
integrated networks with system state delay.

V. MARKOV DECISION PROCESSES WITH DELAYS

We formulate the corresponding MDPs with delays for
modeling the dynamic LEO STINs and the task offloading
process is shown in Fig. 2. The user initially submits a task
offloading request and then the agent selects the optimal
action based on the currently observed system state to make
the offloading decision which will be executed by the user.
Crucially, the agent does not immediately receive updates on
the state and corresponding rewards after the task is offloaded.
It needs to wait for several moments as the system requires
time to process and respond to the offloading action. Moreover,
due to the heterogeneity of user devices, the processing
speeds and completion timings of different tasks are different,
causing the states and rewards received by the agent at a
future moment be potentially influenced by other concurrent
actions. Under these circumstances, the agent faces a complex
and dynamically changing environment, woven together by
multiple influencing factors. For example, as depicted in Fig.
2, the agent sequentially offloads Task 1 to a cloud data center,
while Tasks 2 and 3 are offloaded to a satellite, and Task 4
to an edge server. Subsequently, when the agent receives a
request to offload Task 5, due to network latency and the
heterogeneity of devices, it can only observe the states and
rewards of Tasks 1 and 3, as the execution of Tasks 2 and
4 has not yet completed, thus precluding the acquisition of
their states and rewards. In this scenario, the observed state
and reward information by the agent exhibits delays.

Intuitively, as shown Fig. 3, it is illustrated that when the
agent makes a decision at time t+2 , it can only observe the
system state from time t, which is the most recent system state
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available to the agent. This delayed observation represents the
state delay in the system. Furthermore, if there is an execution
delay for the agent’s actions, the action at decided at time t
will only be executed at time t+5, meaning the action decided
at time t is actually carried out at time t+ 3.

To address the aforementioned issue, we model the task
offloading decision as a stochastic delay Markov decision
process. This approach is employed to capture the randomness
in the timing at which users observe the states and rewards
associated with their tasks.

A. Stochastic Delay Markov Decision Process

In the realm of dynamic systems, the SDMDP represented
by ⟨S,A, PA,R, O,AC,C, γ⟩ is crucial when some uncer-
tainty in delays need to be dealt with, where O, AC, and
C denote the random variables that represent the number
of delay steps in observation, action, and cost, respectively
[35]. It can also be simplified to a standard MDP repre-
sented by

〈
IO,A, PO

A , r
′〉 [34]. The augmented state space

IO is S × AO+AC , incorporating the randomness in O and
AC. It means the length of IO is changing, reflecting the
stochastic nature of delays. Furthermore, since delay is a
random variable, agents might collect rewards repeatedly,
because under partially observable conditions, agents may
only partially observe system state at different time steps.
Due to partial observability, it is crucial to include time
information in the state space, leading to the redefinition
of IO as S × AO+AC × N+. Specifically, the augmented
state space at t is It = {st−O, t, at−O, at−O+1, · · · , at−1}.
If the action at+1 is chosen, the state transitions to It+1 =
{st−O+1, t+1, at−O+1, at−O+2, · · · , at}. Similar to DDMDP,
the reward is defined as r′(st, at) = E[r(st, at)|It]. Therefore,
for an policy π : S × AO+AC × N+ → A, considering the
DDMDP⟨S,A, PA, r, O,AC = 0, C⟩ with observation-delay,
the total expected reward is given by [36]

V π
obs(It) = Eπ,O

∑
l≥t

γ(l−t)r(sl−O, al−O)|It


= Eπ,O

 ∑
l≥t−O

γ(l−t+O)r(sl, al)|It


= Eπ,O

 ∑
l≥t−O

γ(l−t+O)r(sl, al)|It


+ Eπ,O

∑
l≥t

γ(l−t+O)r(sl, al)|It

 ,

(28)

where γ ∈ [0, 1] is the discount factor. The goal is to maximize
the total expected reward under observation delays, V π

obs(It),
i.e.

argmax
π

V π
obs(It)

= argmax
π

Eπ,O

∑
l≥t

γ(l−t+O)r(sl, al)|It

 . (29)

We consider DDMDP⟨S,A, PA, r, O = 0, AC,C⟩ with the
action-delay. Then, the total expected reward is given by

V π
act(It) = Eπ,AC

∑
l≥t

γ(l−t)r(sl, al−AC)|It


= Eπ,AC

 ∑
l≥t−AC

γ(l−t+AC)r(sl+AC , al)|It


= Eπ,AC

 ∑
l≥t−AC

γ(l−t+AC)r(sl+AC , al)|It


+ Eπ,AC

∑
l≥t

γ(l−t+AC)r(sl+AC , al)|It

 .

(30)

Similarly, for action delays, the objective is to maximize the
total expected reward, V π

act(It), i.e.,

argmax
π

V π
act(It)

= argmax
π

Eπ,AC

∑
l≥t

γ(l−t+AC)r(sl+AC , al)|It

 . (31)

VI. PROPOSED SOLUTION ALGORITHM

This section details our solution approach with DRL in LEO
STINs with system state delay.

A. Design elements of DRL

When implementing DRL for LEO networks, we focus on
three crucial components:

1) State and action variables: They include some critical
variables for effective offloading decisions, such as user ca-
pacity, tasks, base station capacity, and connectivity.

2) Reward system: The reward system is designed to drive
the learning process by minimizing the power consumption.
It’s structured as

r =

{
−Es, if (22b)-(22j) are satisfied
x, otherwise.

(32)

where x < 0 is an empirical parameter and −Es is normalized
during the agent training to ensure that it does not fall below
x when the constraints are satisfied.

B. DRL for LEO STINs with Delay

We employ DDQN to train the task offloading agents
which comprises of online network and target network with
identical structures. The online network interacts directly with
the system, tasked with collecting experiences and estimating
action values, Qonline, while the target network is employed
for the estimation of target values, Qtarget. It is important to
note that the parameters of target network are copied from
the online network, and therefore, the target network does not
engage in the learning process.

The learning process of DDQN is illustrated in Fig. 4,
which incorporates an augmented experience pool to store
the experience data collected during the system interactions
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Fig. 4. The architecture of the DDQN scheme for task offloading.

and exhibits delay characteristics. The data, formatted as
(st−O, t, st−O+1, r, aa−O+1, · · · , at, done), provide learning
material for training the online network. During the training
phase, a mini-batch is randomly drawn from the augmented
experience pool, enabling the online network to learn from his-
torical experiences and optimize its decision-making strategy.
The augmented experience pool is derived from the augmented
state space described above.

Specifically, the action value, Qonline(θ
o, It, at, r), where

It = (st−O, t, aa−O, · · · , at−1) is estimated through a
neural network with parameter θo. The target value,
Qtarget(θ

g, It+1, at, r), with inputs It+1 = (st−O+1, t +
1, at−O+1, · · · , at), is similarly estimated by a neural network
with the corresponding parameter θg . It is important to note
that during the training process, θg is updated from θo after
several iterations to ensure timely adjustments of the target
network parameters. The loss function of DDQN aims to
minimize the discrepancy between the outputs of the online
and target networks. Thus, the loss function can been defined
as

J (θo) =
∑

(Qtarget −Qonline)
2 + ||θo||2

=
∑

(Qtarget(It+1, argmax
a

Qonline(It, a))

+ r −Qonline(It, a))
2 + ||θo||2,

(33)

where ||θo||2 represents the L2 weight regularization, r de-
notes the reward calculated according to 32.

C. Complexity Analysis

The complexity of proposed algorithm mainly arises from
two stages: DDQN agent training and DDQN deployment. We
use two deep neural networks (DNN) as our core components
where one DNN requires back propagation and the other one
only performs inference. This is because DNN not only is
simple to implement but also performs well in solving task
offloading problems [43], as demonstrated in Section VII. So,
the complexity of our DNN which requires back propagation
is O(N ·L ·M2), where N is the number of training samples,
L is the number of layers in the neural network, and M is
the number of neurons per layer. For another, the complexity
of our DNN which only performs inference is O(L ·M2). In
summary, the total complexity for training stage is O(N · L ·
M2) while for deployment stage is O(L ·M2).

TABLE I
SYSTEM PARAMETERS

Parameter Value Parameter Value
fn,max [5e7, 5× 108] fm,max [5e7, 5× 108]
fcloud
max 5e8 pbs 1 J/s
fk [5e3, 104] δ2 7.9e-13 mW
α 2 ξ 1
pl 30 J/s pleo 200 J/s

pcloud 1000 J/s pk 40 J/s
pcloudk 100 J/s pbsk 100 J/s

VII. PERFORMANCE EVALUATION
In this section, the simulation results are presented to illus-

trate the effectiveness of proposed task offloading algorithm
in STINS.

A. Simulation Settings

The task offloading algorithm and neural network are imple-
mented with Pytorch1, LEO satellites are modeled using po-
liastro2, and the system model is formulated by Python 3.7. We
implement the proposed framework on a Linux workstation
with 64-bit Ubuntu 22.04.1. The hardware for training all DRL
baselines has one Nvidia’s GPU with GeForce RTX 3090Ti
with 24-GB memory. The CPU is an Intel(R) Core(TM) i9-
10980XE processor, 18 cores, and 3.00GHz clock speed.

In the simulation, we consider a network scenario with a
data center, 10 LEO satellites, 5 base stations, and 10 users.
Each user has 1 task to process at each time slot and the
input data size of computation tasks (in Mbit) is uniformly
distributed in the range of [10, 000, 100, 000]. The output data
size is uniformly distributed in the range of [10, 100] and the
corresponding number of required CPU cycles (in Megacycles)
obeys uniform distribution in the range of [104, 106]. The
transmission bandwidth allocation for the data center, low-
Earth orbit satellites, and base stations are set to 100 MHz,
500 MHz, and 400 MHz, respectively. Other parameters are
with reference to the setting of computing and communication
in STINs [19], [40], [46], [47], the main parameters in our
system are set as in Table I.

Additionally, we take a variety of baseline methods for com-
parisons, including DDQN [40], DQN [40], particle swarm
optimization (PSO) [41], genetic algorithm (GA) [42], sim-
ulated annealing (SA), Random, and advantage actor-critic
(A2C). We also compare four types of neural networks used in
our proposed approach: convolutional neural network (CNN),
DNN, gated neural network (GRU), and long short-term
memory (LSTM) neural network. Among them, a two-layer
convolutional neural network, two-layer feedforward fully
connected neural network, one-layer gated neural network, and
one-layer long short-term memory neural network are used and
the learning rate for these neural networks is set to 0.001.

B. Performance Comparisons and Analysis

In the simulation experiments, we consider two scenarios:
one is the system state delay and the other is the system action

1https://pytorch.org/
2https://github.com/poliastro/poliastro
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(c) Comparisons with action delays.
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(d) Energy consumption comparisons with action delays.

Fig. 5. Main results.

delay. In addition, we also consider fixed system state and
action delays as well as random system state and action delays.

1) Main Results: Fig. 5a shows the performance compar-
isons with random system state delays, where the Delay-
DDQN outperforms other methods and reinforces its robust-
ness and efficiency. Similarly, Fig. 5b presents the total energy
consumption outcomes of various algorithms under the random
system state delays. The Delay-DDQN method consistently
outperforms the other evaluated methods, including traditional
reinforcement learning approaches, such as DDQN and DQN,
as well as heuristic-based methods, like PSO, GA, SA, and
Random. This performance superiority highlights the effec-
tiveness of the Delay-DDQN approach in handling tasks in
dynamic and uncertain environments, further emphasizing its
robustness and efficiency in stochastic settings.

In Fig. 5c and Fig. 5d which focus on the scenarios with
action delays, the Delay-DDQN again demonstrates supe-
rior performance. Fig. 5c illustrates the reward outcomes of
different methods in the presence of action delays and the
Delay-DDQN achieves the higher rewards compared to other
baselines. It indicates the capability to respond effectively
despite the delays in executing actions. Fig. 5d shows the total
energy consumption results for the same set of algorithms
under the stochastic action delays. Here, the Delay-DDQN
maintains lower costs than the other methods, underscoring its
operational efficiency and advantage of incorporating delay-
aware strategies in the optimization process. These results
further validate the robustness and adaptability of the Delay-
DDQN method, making it particularly suitable for the dynamic
environments where the delays are inherent and unpredictable.
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Fig. 6. Comparison of different algorithms under fixed state delays.
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The results in Fig. 6 show that our proposed Delay-DDQN
algorithm outperforms other benchmarks across various fixed
state delay values, as evidenced by the consistently higher re-
wards it achieves. As the state delay increases, the performance
of most algorithms declines, reflecting the challenge of making
optimal decisions with delayed information. However, Delay-
DDQN demonstrates remarkable resilience, maintaining rela-
tively high rewards even at higher delay values, such as when
the delay reaches 5 or more. This suggests that Delay-DDQN
is particularly effective at handling delayed state information,
likely due to its advanced processing of such delays within the
decision-making framework. In comparison, other algorithms
like Delay-A2C, DQN, and DDQN experience more signifi-
cant drops in performance as delays increase, indicating their
lower poorly in such scenarios. Traditional algorithms like
PSO, GA, SA, and Random consistently perform robustness
across all delay values, further underscoring the superiority of
Delay-DDQN in environments with fixed state delays.

The results presented in Fig. 7 illustrate the performance
of various algorithms as the number of users increases. The
proposed Delay-DDQN algorithm consistently outperforms
the other algorithms across all user counts, maintaining the
highest rewards throughout. As the number of users increases,
the rewards generally decrease for all algorithms, which is
expected due to the increased competition for resources and
the greater complexity in decision-making with more users.
However, Delay-DDQN exhibits a more gradual decline in
performance compared to other methods, indicating its su-
perior capability in managing the increased load and com-
plexity associated with a higher number of users. In contrast,
algorithms such as Delay-A2C, PSO, DQN, and DDQN show
decreases in rewards as the user count rises, reflecting their
relatively lower effectiveness in handling scenarios with many
users. Traditional optimization algorithms like GA, SA, and
the Random strategy consistently perform the poorly across
all user counts, further emphasizing the robustness of Delay-
DDQN in user-dense environments.

The results in Fig. 8 show that the performance of vari-
ous algorithms remains relatively stable as the user velocity
changes, with our proposed Delay-DDQN algorithm consis-
tently achieving the highest rewards across all velocity levels.
Note that the values on the horizontal axis represent changes
in speed. When the value is less than 1, the user’s speed
decreases, and when the value is greater than 1, the speed
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Fig. 9. Comparisons with neural networks for stochastic observation delays.

increases. This stability can be attributed to the architecture
of STINs, which utilizes satellites with large coverage ar-
eas. Unlike ground-based networks, where user mobility can
significantly affect communication and offloading decisions,
the extensive coverage provided by satellites ensures that
even at higher user velocities, the impact on task offloading
and network performance is mild. As a result, Delay-DDQN
maintains superior performance regardless of user speed, high-
lighting its effectiveness in dynamic environments. The results
also indicate that while other algorithms like Delay-A2C,
DQN, and DDQN show some variability, the overall influence
of user velocity is limited due to the robust satellite coverage.
Traditional optimization algorithms, such as PSO, GA, SA,
and Random, perform consistently worse, but the effect of
user velocity on their performance is less pronounced.

2) Ablation Studies on State Delays: Fig. 9 shows the
experimental results under the conditions with random system
state delays which varies from 0 to 10. It can been seen that
regardless of the type of used neural network, the rewards
fluctuate within a certain range. This indicates that the pro-
posed method is effective in situations where the system state
delay is random. Furthermore, the experimental results in Fig.
9 suggest that in cases of random system state delays, it is
advisable to choose neural networks that have faster training
efficiency and inference speed. Moreover, Fig. 9 also shows
that the neural networks are unstable during the training.
Despite careful tuning during the experiments, the issue of
training instability could not be alleviated, which may be due
to the more severe system dynamic changes caused by the
random system state delays.

Fig. 10 depicts the loss value trends of various neural
networks in DDQN under the conditions of random system
state delays. The results indicate that during the early stage
of training, the loss value quickly rises from 2.25 to around
4.4, then continuously decreases, and finally oscillates within
a certain range. In the initial phase of training, due to the
presence of system state delays and the inability to collect
system feedback, including the system rewards, the loss value
rapidly increases to around 4.4. Afterwards, the loss value
begins to decrease and oscillates within a range, which shows
that the proposed method has a certain learning capability.
This oscillation of loss values briefly leads to a time-variant
optimization performance in each neural network. About the
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above simulation results, the neural network performs differ-
ently under both fixed system state delay and random system
state delay. Overall, the results validate the effectiveness of
proposed method.

3) Ablation Studies on Action Delays: Fig. 11 presents the
experimental results under the conditions with random system
action delays which varies from 0 to 10. The results show
that except for the GRU neural network, the rewards for CNN,
DNN, and LSTM neural networks fluctuate within a certain
range. It can be observed that the type of neural network af-
fects the performance of proposed method and the loss value of
the GRU neural network does not converge, leading to poorer
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Fig. 12. Comparisons with neural networks for loss value on stochastic action
delays.

performance, as shown in Fig. 12. Similarly, in the early stages
of training, the loss value quickly rises from 2.2 to around
4.3, then continuously decreases, and finally oscillates within
a certain range. The rapid increase in loss value in the early
stages is due to the presence of system state delays and the
inability to collect system feedback, including system rewards.
The subsequent decrease and oscillation in loss value indicate
that the proposed method has a certain learning capability.
This figure demonstrates that whether the loss value converges
during the training period of proposed method does not affect
our task offloading performance. Therefore, considering the
training stability of proposed method is important when there
are system action delays.

4) Analysis of Computing Resource Allocation: Fig. 13
demonstrates the performance improvement of RAMLFQ over
the traditional Multi-Level Feedback Queue (MLFQ) through
two metrics: average turnaround time and average waiting
time. Fig. 13a illustrates the impact of task number on the
average turnaround time. Compared with MLFQ, RAMLFQ
exhibits significantly lower turnaround times across all task
quantity configurations which indicates its more efficient man-
agement of task execution. Particularly, as the number of tasks
increases, the performance advantage of RAMLFQ becomes
more evident which shows its effective resource management
under the high load conditions. Fig. 13b provides a view
of the effect of task number on the average waiting time.
RAMLFQ offers a lower waiting time in most scenarios,
especially when the task number is high. It underscores the
ability of RAMLFQ to reduce the waiting times when handling
a large volume of tasks. This is because of its fine-grained
management in terms of priorities and resource constraints.
Furthermore, Fig. 13c displays a comparison of the average
response time between RAMLFQ and MLFQ algorithms under
different task numbers. In most cases, the response time of
RAMLFQ is higher than that of MLFQ. This increase in
response time in RAMLFQ is because of the adoption of more
fine-grained priority and the dynamic allocation strategy in
allocating computing resources. It means that RAMLFQ tends
to give preference to high-priority or resource-intensive tasks
during the resource allocation, and these tasks require a longer
time to respond. Moreover, the longer response time might
also reflect RAMLFQ’s efforts to ensure fairness in resource
allocation, which might lead to a slight delay in responding
to certain tasks so that the system can serve all tasks more
equitably. Although RAMLFQ’s response time is marginally
higher than MLFQ, its advantages in terms of turnaround
time and waiting time might more effectively demonstrate
its superior performance in dynamic and complex computing
environments. This suggests that the RAMLFQ strategy has
significant advantages in terms of adaptability and flexibility
in meeting diverse task requirements.

VIII. CONCLUSION

Due to network entity mobility, architecture variation, and
user heterogeneity, STINs often experience various system
state delays which will bring out significant challenges for
computation offloading and resource allocation issues. In this
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Fig. 13. The performance of computing resource allocation based on CPU task scheduling.

paper, we have jointly considered the computation offloading
and resource allocation to address the system state delay
problem. We have explored the computation offloading chal-
lenge in LEO STINs, particularly focusing on the system
state delay. We also have proposed a multi-level feedback
queue for computing allocation and a state augmentation
DRL task scheduling mechanism. These solutions efficiently
allocate the computing resources across various edge servers,
including base stations and LEO satellites. To mitigate the
impact of system state delay, we have employed stochastic
delay MDPs to formulate the problem and then formulated a
state-augmented DRL-based computation offloading approach
to seek an optimal offloading mode. The utilization of deep
neural networks and DDQN significantly enhanced the learn-
ing performance. Finally, the simulation results have confirmed
the effectiveness of the proposed approaches.

In the future, we will explore the use of digital twins
in STINs to accurately model real-world scenarios, ensuring
smoother transitions from simulation to deployment. This
approach is crucial for enhancing the reliability and perfor-
mance of deep reinforcement learning models in practical
applications. Moreover, we will also consider the use of phased
array antennas in LEO satellites and base stations, as well as
account for interbeam interference and interference between
cellular and satellite coverage.

REFERENCES

[1] T. Pfandzelter and D. Bermbach, “Edge (of the earth) Replication:
Optimizing Content Delivery in Large LEO Satellite Communication
Networks,” in Proc. IEEE/ACM CCGrid, Melbourne, VIC, Australia,
May. 2021, pp. 565¨C575.

[2] C. Ding, J. -B. Wang, M. Cheng, M. Lin and J. Cheng, “Dynamic
Transmission and Computation Resource Optimization for Dense LEO
Satellite Assisted Mobile-Edge Computing,” IEEE Trans. Commun., vol.
71, no. 5, pp. 3087-3102, May. 2023.

[3] D. Wang, T. He, Y. Lou, L. Pang, Y. He and H. -H. Chen, “Double-edge
Computation Offloading for Secure Integrated Space-air-aqua Networks”,
IEEE Internet Things J., vol. 10, no. 17, pp. 15581-15593, Sep. 2023.

[4] Q. Tang, Z. Fei, B. Li and Z. Han, “Computation Offloading in LEO
Satellite Networks With Hybrid Cloud and Edge Computing,” IEEE
Internet Things J., vol. 8, no. 11, pp. 9164-9176, Jun. 2021.

[5] Q. Tang, Z. Fei, B. Li, H. Yu, Q. Cui, J. Zhang and Z. Han, “Stochastic
Computation Offloading for LEO Satellite Edge Computing Networks: A
Learning-Based Approach,” IEEE Internet Things J., pp. 1-1, Aug. 2023.

[6] H. Zhang, S. Xi, H. Jiang, Q. Shen, B. Shang and J. Wang, “Resource
Allocation and Offloading Strategy for UAV-Assisted LEO Satellite Edge
Computing”. Drones, vol. 7, no. 6, pp. 383, 2023.

[7] Z. Ji, S. Wu and C. Jiang, “Cooperative Multi-Agent Deep Reinforcement
Learning for Computation Offloading in Digital Twin Satellite Edge
Networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 11, pp. 3414-3429,
Nov. 2023.

[8] S. Fujimoto, H. Hoof and D. Meger. “Addressing Function Approximation
Error in Actor-critic Methods”. in Proc. Int. conf. mach. learn., 2018, pp.
1587-1596.

[9] S. Sthapit, S. Lakshminarayana, L. He, G. Epiphaniou and C. Maple,
“Reinforcement Learning for Security-Aware Computation Offloading in
Satellite Networks,” IEEE Internet Things J., vol. 9, no. 14, pp. 12351-
12363, Jul, 2022.

[10] G. Cui, Y. Long, L. Xu and W. Wang, “Joint Offloading and Resource
Allocation for Satellite Assisted Vehicle-to-Vehicle Communication,”
IEEE Syst. J., vol. 15, no. 3, pp. 3958-3969, Sep. 2021.

[11] S. Nath, M. Baranwal and H. Khadilkar, “Revisiting state augmentation
methods for reinforcement learning with stochastic delays”, in Proc.
ACM. Int. Conf. Inf. Knowl. Manage., 2021, pp. 1346-1355.

[12] R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu and T. Huang, “Satellite-
Terrestrial Integrated Edge Computing Networks: Architecture, Chal-
lenges, and Open Issues,” IEEE Network, vol. 34, no. 3, pp. 224-231,
May./Jun. 2020.

[13] Q. Zhang, Y. Luo, H. Jiang and K. Zhang, “Aerial Edge Computing: A
Survey,” IEEE Internet Things J., vol. 10, no. 16, pp. 14357-14374, 15
Aug. 2023.

[14] Y. Lin, W. Feng, T. Zhou, Y. Wang, Y. Chen, N. Ge and C. Wang,
“Integrating Satellites and Mobile Edge Computing for 6G Wide-Area
Edge Intelligence: Minimal Structures and Systematic Thinking,” IEEE
Network, vol. 37, no. 2, pp. 14-21, Mar./Apr. 2023.

[15] Z. Zhang, W. Zhang and F. -H. Tseng, “Satellite Mobile Edge Comput-
ing: Improving QoS of High-Speed Satellite-Terrestrial Networks Using
Edge Computing Techniques,” IEEE Network, vol. 33, no. 1, pp. 70-76,
Jan./Feb. 2019.

[16] Z. Lin, M. Lin, T. de Cola, J. -B. Wang, W. -P. Zhu and J. Cheng,
“Supporting IoT With Rate-Splitting Multiple Access in Satellite and
Aerial-Integrated Networks,” IEEE Internet Things J., vol. 8, no. 14, pp.
11123-11134, 15 July15, 2021.

[17] G. Valecce, S. Strazzella, and L. A. Grieco, “On the interplay between
5G, mobile edge computing and robotics in smart agriculture scenarios,”
Proc. 18th Int. Conf. Ad-Hoc Netw. Wireless (ADHOC-NOW 2019),
Luxembourg, Luxembourg, Oct. 1-3, 2019, pp. 549-559.

[18] J. Du, C. Jiang, A. Benslimane, S. Guo and Y. Ren, “SDN-Based
Resource Allocation in Edge and Cloud Computing Systems: An Evo-
lutionary Stackelberg Differential Game Approach,” IEEE/ACM Trans.
Networking, vol. 30, no. 4, pp. 1613-1628, Aug. 2022.

[19] X. Cao et al., “Edge-Assisted Multi-Layer Offloading Optimization
of LEO Satellite-Terrestrial Integrated Networks,” IEEE J. Sel. Areas
Commun., vol. 41, no. 2, pp. 381-398, Feb. 2023.

[20] Z. Lin, M. Lin, B. Champagne, W. -P. Zhu and N. Al-Dhahir, “Secrecy-
Energy Efficient Hybrid Beamforming for Satellite-Terrestrial Integrated
Networks,” IEEE Trans. Commun., vol. 69, no. 9, pp. 6345-6360, Sept.
2021.

[21] J. von Mankowski, E. Durmaz, A. Papa, H. Vijayaraghavan and W.
Kellerer, “Aerial-Aided Multiaccess Edge Computing: Dynamic and Joint
Optimization of Task and Service Placement and Routing in Multilayer
Networks,”IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 3, pp. 2593-
2607, Jun. 2023.

[22] X. Zhang, J. Liu, R. Zhang, Y. Huang, J. Tong, N. Xin, L. Liu and Z.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3479243

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 22,2024 at 08:13:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024 13

Xiong, “Energy-Efficient Computation Peer Offloading in Satellite Edge
Computing Networks,” IEEE Trans. Mob. Comput., pp. 1-15, Apr. 2023.

[23] Q. Li, S. Wang, X. Ma, Q. Sun, H. Wang, S. Cao and F. Yang, “Service
Coverage for Satellite Edge Computing,” IEEE Internet Things J., vol. 9,
no. 1, pp. 695-705, Jan. 2022.

[24] C. Ding, J. -B. Wang, H. Zhang, M. Lin and G. Y. Li, “Joint Opti-
mization of Transmission and Computation Resources for Satellite and
High Altitude Platform Assisted Edge Computing,” IEEE Trans. Wireless
Commun., vol. 21, no. 2, pp. 1362-1377, Feb. 2022.

[25] J. Liu, X. Zhao, P. Qin, S. Geng and S. Meng, “Joint Dynamic Task
Offloading and Resource Scheduling for WPT Enabled Space-Air-Ground
Power Internet of Things,” IEEE Trans. Network Sci. Eng., vol. 9, no. 2,
pp. 660-677, Mar./Apr. 2022.

[26] Y. Yin, C. Huang, D. Wu and S. Huang, “Joint Computation Offloading
and Resource Allocation in Space-air-terrestrial Integrated Networks for
IoT Applications”. Ad Hoc Networks, vol. 150, pp. 103267, Aug. 2023.

[27] Y. Liu, L. Jiang, Q. Qi, K. Xie and S. Xie, “Online Computation Of-
floading for Collaborative Space/Aerial-Aided Edge Computing Toward
6G System”. IEEE Trans. Veh. Technol., pp. 1-11, Sep. 2023.

[28] B. Mao, F. Tang, Y. Kawamoto and N. Kato, “Optimizing Computation
Offloading in Satellite-UAV-Served 6G IoT: A Deep Learning Approach,”
IEEE Network, vol. 35, no. 4, pp. 102-108, Jul./Aug. 2021.

[29] S. Yu, X. Gong, Q. Shi, X. Wang and X. Chen, “EC-SAGINs: Edge-
Computing-Enhanced Space¨CAir¨CGround-Integrated Networks for In-
ternet of Vehicles,” IEEE Internet Things J., vol. 9, no. 8, pp. 5742-5754,
Apr. 2022.

[30] G. Cui, P. Duan, L. Xu and W. Wang, “Latency Optimization for Hybrid
GEO¨CLEO Satellite-Assisted IoT Networks,” IEEE Internet Things J.,
vol. 10, no. 7, pp. 6286-6297, Apr. 2023.

[31] H. Zhang, R. Liu, A. Kaushik and X. Gao, “Satellite Edge Computing
With Collaborative Computation Offloading: An Intelligent Deep Deter-
ministic Policy Gradient Approach,” IEEE Internet Things J., vol. 10, no.
10, pp. 9092-9107, May, 2023.

[32] N. Waqar, S. A. Hassan, A. Mahmood, K. Dev, D. -T. Do and M.
Gidlund, “Computation Offloading and Resource Allocation in MEC-
Enabled Integrated Aerial-Terrestrial Vehicular Networks: A Reinforce-
ment Learning Approach,” IEEE Trans. Intell. Transp. Syst., vol. 23, no.
11, pp. 21478-21491, Nov. 2022.

[33] S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han and C. S. Hong,
“Satellite-Based ITS Data Offloading & Computation in 6G Networks:
A Cooperative Multi-Agent Proximal Policy Optimization DRL With
Attention Approach,” IEEE Trans. Mob. Comput., pp. 1-18, Aug. 2023.

[34] E. Altman and P. Nain, “Closed-loop Control with Delayed Information,”
Perf. Eval. Rev., vol. 14, pp. 193-204, 1992.

[35] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov Decision Processes
with Delays and Asynchronous Cost Collection,” IEEE Trans. Autom.
Control., vol. 48, no. 4, pp. 568-574, Apr. 2003.

[36] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
pp. 279-292, 1992.

[37] F. J. Corbat¨®, M. Merwin-Daggett and R.C. Daley, “An experimental
time-sharing system”, in Proc. Spring. Joint. Comput. Conf., 1962, pp.
335-344.

[38] A. U. Chaudhry and H. Yanikomeroglu, “Laser Intersatellite Links in a
Starlink Constellation: A Classification and Analysis,” IEEE Veh. Technol.
Mag., vol. 16, no. 2, pp. 48-56, Jun. 2021.

[39] Z. Lin, H. Niu, K. An, Y. Wang, G. Zheng, S. Chatzinotas, and Y. Hu,
“Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint
Beamforming Design and Optimization,” IEEE Trans. Aerosp. Electron.
Syst., vol. 58, no. 4, pp. 3717-3724, Aug. 2022.

[40] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi and X. Shen,
“Space/Aerial-Assisted Computing Offloading for IoT Applications: A
Learning-Based Approach,” IEEE J. Sel. Areas Commun., vol. 37, no. 5,
pp. 1117-1129, May. 2019.

[41] X. Gao, H. Yingmeng, S. Yingzhao, Z. Hangyu, L. Yang, L. Rongke and
Z. Jianhua, “Hierarchical Dynamic Resource Allocation for Computation
Offloading in LEO Satellite Networks,” IEEE Internet Things J., vol. 11,
no. 11, pp. 19470-19484, Jun. 2024.

[42] G. Cui, P. Duan, L. Xu and W. Wang, “Latency Optimization for Hybrid
GEO-LEO Satellite-Assisted IoT Networks,” IEEE Internet Things J., vol.
10, no. 7, pp. 6286-6297, Apr. 2023.

[43] H. Zhai, X. Zhou, H. Zhang and D. Yuan, “Delay Minimization in
Hybrid Edge Computing Networks: A DDQN-Based Task Offloading
Approach,” IEEE Trans. Veh. Technol., pp. 1-11, May. 2024.

[44] P. Wei, W. Feng, Y. Wang, Y. Chen, N. Ge and C. -X. Wang, ”Joint
Mobility Control and MEC Offloading for Hybrid Satellite-Terrestrial-
Network-Enabled Robots,” IEEE Trans. Wireless Commun., vol. 22, no.
11, pp. 8483-8497, Nov. 2023.

[45] Z. Lin, M. Lin, J. -B. Wang, T. de Cola and J. Wang, “Joint Beamforming
and Power Allocation for Satellite-Terrestrial Integrated Networks With
Non-Orthogonal Multiple Access,” IEEE J. Sel. Top. Signal Process., vol.
13, no. 3, pp. 657-670, June 2019.

[46] Y. Wang and K.A. Gui, “Optimization of Energy Use in Radio Frequency
Transmission for Satellite Communication,” Computer Communications,
vol. 211, pp. 73-82, Nov. 2023.

[47] J. Lorincz, T. Garma and G. Petrovic, “Measurements and Modelling
of Base Station Power Consumption under Real Traffic Loads”, Sensors,
vol. 12, no. 4, pp. 4281-4310, Mar. 2012.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3479243

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on November 22,2024 at 08:13:18 UTC from IEEE Xplore.  Restrictions apply. 


