孙磊 副教授

Lei SUN
  • 办公室:
  • 导师类别:硕导
  • E-mail:lsun@szu.edu.cn
  • 办公电话:0755-26904875
个人详情

孙磊,深圳大学长聘副教授,深圳市海外高层次人才,香港中文大学07级物理哲学博士,2012~2016年密苏里科技大学访问学者。2016年9月入职深圳大学。兼任美国物理学会(APS)审稿人,美国光学学会(OSA)审稿人。主要研究方向包括电磁波与功能性材料相互作用的理论计算和数值分析实验,以及等效介质理论的第一性原理的研究。

Dr. Lei Sun, Associate Professor , Oversea High-Caliber Personnel of Shenzhen, received the Ph.D. degree in Physics from the Chinese University of Hong Kong in 2011, worked as a visiting scholar at Missouri University of Science and Technology from 2012 to 2016, and joined Shenzhen University in 2016. Meanwhile, Dr. Sun holds a concurrent post as a reviewer for the American Physical Society (APS) and The Optical Society (OSA). Dr. Sun's primary research interest is the theory and simulation of material electromagnetic properties and the effective medium theory.

教育经历:

• 哲学博士,理论物理,香港中文大学物理系,2007/08–2011/12

• 理学硕士,凝聚态物理,南开大学物理科学学院,2003/09–2006/06

• 理学学士,物理学,南开大学物理科学学院,1999/09–2003/06

科研经历:

• 副教授,深圳大学,2023/07–至今

• 助理教授,深圳大学,2016/09–2023/06

• 访问学者,美国密苏里大学机械与航天工程系,2012/04–2016/06

• 初级研究助理,香港中文大学物理系,2010/12–2011/12

研究方向:

• 超材料,光子晶体,表面等离子体激元 (metamaterials, photonic crystals, surface plasmon polaritons)

• 米散射 (Mie scattering theory)

• 等效介质理论 (effective medium theory)

研究成果:

[1] L. Sun and G. P. Wang, Broadband ENZ metamaterials and its application in optical field manipulation, Acta Photonica Sinica 51, 0151107 (2022). (特邀综述)

[2] B. Hong, L. Sun, W. Wang, Y. Qiu, N. Feng, D. Su, N. Somjit, I. Robertson, and G. P. Wang, Five-channel frequency-division multiplexing using lowloss epsilon-near-zero metamaterial waveguide, Science China-Physics, Mechanics & Astronomy 65, 274211 (2022).

[3] D. Yang, F. Feng, L. Sun, N. Wang, and G. P. Wang, Realization of magneto-optical near-zero-index metamaterial by using an array of spinning cylinders, Physical Review A 105, 043517 (2022).

[4] Z. Liu, G. Wei, D. Zhang, W. Chen, L. Sun, J. Li, and J. J. Xiao, Strong frequency-dependent beam steering dynamics, Zitterbewegung effect, and Klein tunneling in a ternary plasmonic-dielectric superlattice, Physical Review B 103, 195415 (2021).

[5] H. Song, L. Sun, and G. P. Wang, Tunable perfect magnetic mirrors and retroreflectors in terahertz band, Optics Express 28, 753 (2020).

[6] H. Song, L. Sun, B. Hong, and G. P. Wang, Magnetic mirror by exciting magnetic quadrupole in dielectric metasurface, Journal of Optics 21, 125101 (2019).

[7] L. Sun, K. W. Yu, and G. P. Wang, Inverse design of broadband epsilon-near-zero metasurface with nanoscale airtube superlattice based on the Bergman-Milton spectral representation, Physical Review B 100, 125439 (2019).

[8] L. Sun, K. W. Yu, and G. P. Wang, Design anisotropic broadband epsilon-near-zero metamaterials: rigorous use of Bergman and Milton spectral representations, Physical Review Applied 9, 064020 (2018).

[9] L. Sun, J. Gao, and X. Yang, Klein tunneling near the Dirac points in metal-dielectric multilayer metamaterials, Scientific Reports 7, 9678 (2017).

[10] L. Sun, X. Yang, and J. Gao, Analysis of nonlocal effective permittivity and permeability in symmetric metal-dielectric multilayer metamaterials, Journal of Optics 18, 065101 (2016).

[11] L. Sun, J. Gao, and X. Yang, Optical nonlocality induced Zitterbewegung near the Dirac point in metal-dielectric multilayer metamaterials, Optics Express 24, 7055 (2016).

[12] L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials, Physical Review B 91, 195147 (2015).

[13] L. Sun, X. Yang, W. Wang, and J. Gao, Diffraction-free optical beam propagation with near-zero phase variation in extremely anisotropic metamaterials, Journal of Optics 17, 035101 (2015).

[14] L. Sun, F. Cheng, C. J. Mathai, S. Gangopadhyay, J. Gao, and X. Yang, Experimental characterization of optical nonlocality in metal-dielectric multilayer metamaterials, Optics Express 22, 22974 (2014).

[15] L. Sun, J. Gao, and X. Yang, Realizing broadband electromagnetic transparency with a graded-permittivity sphere, Journal of Optics. 16, 085101 (2014).

[16] L. Sun, X. Yang, and J. Gao, Loss-compensated broadband epsilon-near-zero metamaterials with gain media, Applied Physics Letters 103, 201109 (2013).

[17] L. Sun, J. Gao, and X. Yang, Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials, Optics Express 21, 21542 (2013).

[18] L. Sun, J. Gao, and X. Yang, Broadband epsilon-near-zero metamaterials with steplike metal-dielectric multilayer structures, Physical Review B 87, 165134 (2013).

[19] L. Sun, S. Feng, and X. Yang, Loss enhanced transmission and collimation in anisotropic epsilon-near-zero metamaterials, Applied Physics Letters 101, 241101 (2012).

[20] L. Sun, K. W. Yu, and X. Yang, Integrated optical devices based on broadband epsilon-near-zero meta-atoms, Optics Letters 37, 3096 (2012).

[21] L. Sun and K. W. Yu, Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media, Applied Physics Letters 100, 261903 (2012).

[22] L. Sun and K. W. Yu, Broadband transparency with a graded anisotropic metal-dielectric sphere, Journal of Optics 14, 055101 (2012).

[23] L. Sun and K. W. Yu, Strategy for designing broadband epsilon-near-zero metamaterials, Journal of the Optical Society of America B 29, 984 (2012).

[24] L. Sun and K. W. Yu, Broadband electromagnetic transparency by graded metamaterials: scattering cancellation scheme, Journal of the Optical Society of America B 28, 994 (2011).