张晓

  • 办公室:致信楼N305
  • 导师类别:
  • E-mail:xiao.zhang@szu.edu.cn
  • 办公电话:
个人详情

个人简介

张晓,男,广东高州人,博士,深圳大学信息工程学院副教授。本科和研究生就读于华南理工大学,博士毕业于澳门大学,师从著名学者、IEEE Fellow祝雷教授。主要研究方向为微带贴片天线,终端天线,圆极化天线,反射阵,特征模理论等。截至20244月,共发表篇SCI论文超过60篇,包含中科院一区/二区论文逾30篇。截至20244google scholar引用累计1632次,h指数21h10指数382018年,获澳门科技奖之研究生科研奖,主持国家自然科学基金一项,同时被评为深圳市海外高层次人才(孔雀计划C类);20192022年入选全球前2%科学家。

张晓老师坚持产学研结合的研究特色,在深耕天线理论的同时,将理论与实践结合,不遗余力地推进成果的应用转化。近年来,课题组与大疆、小天才、电目科技、芯联创展、京信通信、雨辰智创、德门电子等知名科技企业合作,签订了横向合作项目多项,转让/许可专利6项。多项成果已成功应用落地,获得了巨大的社会经济效益。其中,课题组首创地提出的耦合圆极化天线技术,成功应用于广东小天才科技有限公司的多款旗舰产品,截至20229月出货量累计500万台,产值高达15亿。同时,该项目被合作公司内部评为“近十年来最成功的产学研项目”!

张晓老师热爱教学,自2018年以来担任了《数据采集与处理》,《高频电路》,《微波技术与天线》,《模拟电路》等本科课程的教学工作,在教学上倾心付出,获得了学生的一致好评,绝大部分课程的教学评价排在前10%左右或以内。其《高频电路》授课视频在B站上获得全国各个高校学生的青睐,播放热度长期位于知识区前2%2018年参加深圳大学青年教师教学能力培养薪火计划,获评优秀;在2018-20192020-2021学年度考核中,获评优秀; 2020年获评深圳大学教学单项奖之优秀本科课程奖2023年参加深圳大学电子与信息学院院长教学奖,获第二名。2023出版《CST仿真设计理论与实践》,受到业界欢迎,荣登清华大学出版社2023年京东618畅销榜,同时作为教材/参考书被香港城市大学、电子科技大学、重庆大学、重庆邮电大学等高校采用。

工作经历

2023.08-至今,深圳大学电子与信息工程学院,副教授

2018.03-2023.08, 深圳大学电子与信息工程学院,助理教授

教育经历

2014.08-2018.09澳门大学,电机及电脑工程专业,博士

2011.09-2014.07华南理工大学,通信与信息系统专业,硕士

2007.09-2011.07 华南理工大学,信息工程专业,学士

研究方向

微带贴片天线,终端天线,圆极化天线,反射阵,特征模理论等

应用领域

5G通信MIMO系统,车联网,物联网,卫星通信,移动终端,智能可穿戴设备等

主持项目

1. 国家自然科学基金青年项目,“基于加载技术的高增益贴片天线的研究”,2019.01-2021.12,项目负责人。

2. 深圳市基础研究面上项目,“用于5G室分系统深度覆盖的高阶谐振平面天线的研究”,2020.06-2023.05,项目负责人。

3. 横向项目,“电话手表GPS圆极化天线及其产品化应用的研究”,广东小天才科技有限公司,2020.06-2021.05项目负责人。

4. 横向项目,“毫米波封装天线测试技术研究”,京信通信系统(中国)有限公司,2020.10-2021.09项目负责人。

5. 横向项目,微波/毫米波透明天线关键技术的研究”,深圳市志凌伟业技术股份有限公司,2023.09-2025.08项目负责人。

6. 横向项目,可穿戴设备圆极化天线关键测试调试技术的研究”,深圳市海德门电子有限公司,2023.11-2025.11项目负责人。

7. 横向项目,高增益圆极化天线及其相控阵的研发”,佛山市雨辰空间感知科技有限公司,2023.09-2025.08项目负责人。

8. 横向项目,UHF圆极化电子相控阵天线的研发”,深圳市东振技术有限公司,2024.03-2026.02

部分奖项

2023年深圳大学电子与信息工程学院院长教学奖

2022年度全球前2%科学家

2020. 04 深圳大学教学单项奖之优秀本科课程奖

2019年度全球前2%科学家

2019.03 深圳市南山区“领航人才”

2018.09 深圳市高层次人才C

2018.10 澳门研究生研发科研奖

主要代表作

[1] K. -D. Hong, X. Zhang*, H. -Y. Weng, L. Zhu and T. Yuan, "A 2-D Self-Decoupling Method Based on Antenna-Field Redistribution for MIMO Patch Antenna Array," IEEE Antennas Wirel. Propag. Lett., vol. 23, no. 3, pp. 940-944, Mar. 2024.

[2] S. -W. Yu, X. Zhang*, Q. -S. Wu, L. Zhu, T. Yuan and Q. -H. Jiang, "Low-SAR and High-FBR Patch Antenna With Small Ground Size for Wearable Devices," IEEE Open Journal of Antennas and Propagation, vol. 5, no. 1, pp. 124-129, Feb. 2024

[3] Q. -S. Wu, X. -Y. Tang, X. Zhang*, L. Zhu, G. Zhang and C. -B. Guo, "Circularly-Polarized Patch Antennas With Enhanced Bandwidth Based on Capacitively Coupled Orthogonal Patch Radiators," IEEE Open Journal of Antennas and Propagation, vol. 4, pp. 472-483, 2023.

[4] Q. -Y. Zeng, X. Zhang*, L. Zhu, Q. -S. Wu and T. Yuan, "Decoupling of Antenna Pairs Based on Equal Modal Conductance by Antenna-Shape Modification," IEEE Trans. Antennas Propag., vol. 71, no. 3, pp. 2182-2193, Mar. 2023. (中科院一区,顶刊)

[5] Q. -S. Wu, X. Zhang*, L. Zhu, J. Wang, G. Zhang and C. -B. Guo, "A Single-Layer Dual-Band Dual-Sense Circularly Polarized Patch Antenna Array With Small Frequency Ratio," IEEE Trans. Antennas Propag., vol. 70, no. 4, pp. 2668-2675, Apr. 2022. (中科院一区,顶刊)

[6] L. Wang, S.-W. Wong, X. Zhang*, et al., "Stable High-Gain Linearly and Circularly Polarized Dielectric Resonator Antennas Based on Multiple High-Order Modes," in IEEE Transactions on Antennas and Propagation, vol. 70, no. 12, pp. 12270-12275, Dec. 2022. (中科院一区,顶刊)

[7] X. Zhang, Z. -P. Zhong, Q. -Y. Zeng, Q. -S. Wu, L. Zhu and T. Yuan, “Principle and unified design of circularly polarized quadruple inverted-F antenna with miniaturized size and enhanced front-to-back ratio,” IEEE Trans. Antennas Propag., vol. 70, no. 9, pp. 7735-7744, Sept. 2022. (中科院一区,顶刊)

[8] X. Zhang, Q.-Y. Zeng, Z.-P. Zhong, Q.-S. Wu, L. Zhu, T. Yuan, Q.-H. Jiang, and B. Mei., “Analysis and design of stable-performance circularly-polarized antennas based on coupled radiators for smart watches,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5312-5323, Jul. 2022. (中科院一区,顶刊)

[9] X. Zhang, K. -D. Hong, L. Zhu, X. -K. Bi and T. Yuan, “Wideband differentially fed patch antennas under dual high-order modes for stable high gain," IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 508-513, Jan. 2021. (中科院一区,顶刊)

[10] X. Zhang and L. Zhu, “Patch antennas with loading of a pair of shorting pins toward flexible impedance matching and low cross-polarization,” IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1226-1233, Apr. 2016. (中科院一区,顶刊)

[11] X. Zhang and L. Zhu, “Gain-enhanced patch antennas with loading of shorting pins,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3310-3318, Aug. 2016. (中科院一区,顶刊)

[12] X. Zhang and L. Zhu, “High-gain circularly polarized microstrip patch antenna with loading of shorting pins,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2172-2178, Jun. 2016. (中科院一区,顶刊)

[13] X. Zhang, L. Zhu, and N.-W. Liu, “Pin-loaded circularly-polarized patch antennas with wide 3-dB axial ratio beamwidth,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 521-528, Feb. 2017. (中科院二区,IF=4.130the most popular paper of AP in Feb. 2017. (中科院一区,顶刊)

[14] X. Zhang and L. Zhu, “Gain-enhanced patch antenna without enlarged size via loading of slot and shorting pins,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 5702-5709, Nov. 2017. (中科院一区,顶刊)

[15] X. Zhang and L. Zhu, “Side-lobe-reduced and gain-enhanced square patch antennas with adjustable beamwidth under TM03 mode operation,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1704-1713, Apr. 2018. (中科院一区,顶刊)

[16] X. Zhang and L. Zhu, “Dual-band high-gain differentially fed circular patch antenna working in TM11 and TM12 modes,” IEEE Trans. Antennas Propag., vol. 66. no. 6, pp. 3160-3165, Jun. 2018. (中科院一区,顶刊)

[17] X. Zhang, T. -Y. Tan, Q. -S. Wu, L. Zhu, S. Zhong and T. Yuan, “Pin-Loaded Patch Antenna Fed With a Dual-Mode SIW Resonator for Bandwidth Enhancement and Stable High Gain,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 2, pp. 279-283, Feb. 2021. (中科院二区)

[18] X. Zhang, Q. S. Wu, L. Zhu, G.-L. Huang, and T. Yuan, “Resonator-fed wideband and high-gain patch antenna with enhanced selectivity and reduced cross-polarization” IEEE Access, vol. 7, pp. 49918-49927, Apr. 2019. (中科院二区)

[19] X. Zhang, L. Zhu, N.-W. Liu, and D.-P. Xie, “Pin-loaded circularly-polarised patch antenna with sharpened gain roll-off rate and widened 3-dB axial ratio beamwidth,” IET Microw., Antennas Propag., vol. 12, no. 8, pp. 1247-1254, Aug. 2018.

[20] K. -D. Hong, X. Zhang*, and T. Yuan, "Closely-spaced half-ring patch antenna pair with enhanced isolation, reduced cross-polarization, and consistent beam,” IEEE Antennas Wirel. Propag. Lett., 2022, early access, doi: 10.1109/LAWP.2022.3212195.

[21] K. -D. Hong, X. Chen, X. Zhang*, L. Zhu and T. Yuan, “A slot-loaded high-gain circular patch antenna with reconfigurable orthogonal polarizations and low cross polarization,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 3, pp. 511-515, Mar. 2022. (中科院二区)

[22] K. -D. Hong, X. Zhang*, L. Zhu, X. -K. Bi, Z. Chen and T. Yuan, “A self-balanced wideband patch antenna fed with a U-resonator for stable radiation performance,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 4, pp. 661-665, April 2020. (中科院二区)

[23] X. -K. Bi, X. Zhang*, S. -W. Wong, S. -H. Guo and T. Yuan, “Reconfigurable-bandwidth DWB BPF with fixed operation frequency and controllable stopband,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 141-145, Jan. 2021.

[24] X. -K. Bi, X. Zhang*, S. -W. Wong, T. Yuan and S. -H. Guo, “Design of equal-ripple dual-wideband bandpass filter with minimum design parameters based on cross-shaped resonator,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1780-1784, Oct. 2020.

[25] X. -K. Bi, X. Zhang, S. -W. Wong, S. -H. Guo and T. Yuan, “Synthesis Design of Chebyshev Wideband Band-Pass Filters With Independently Reconfigurable Lower Passband Edge,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 2948-2952, Dec. 2020.

[26] B. Liu, S. -W. Wong, K. -W. Tam, X. Zhang, and Y. Li, “Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics,” IEEE Trans. Antennas Propag., 70, no. 2, pp. 1068-1076, Feb. 2022. (中科院一区,顶刊)

[27] D.-P. Xie, L. Zhu, and X. Zhang, “An EH0-mode microstrip leaky-wave antenna with periodical loading of shorting pins,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3419-3426, Jul. 2017. (中科院一区,顶刊)

[28] Q. –S. Wu, X. Zhang, and L. Zhu, “A wideband circularly polarized patch antenna with enhanced axial ratio bandwidth via co-design of feeding network,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 4996-5003, Oct. 2018. (中科院一区,顶刊)

[29] Q.-S. Wu, X. Zhang, and Lei Zhu, Co-design of a Wideband Circularly Polarized Filtering Patch Antenna with Three Minima in Axial Ratio Response,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5022-5030, Oct. 2018. (中科院一区,顶刊)

[30] X. K. Bi, X. Zhang, G.-L. Huang, and T. Yuan, “Compact microstrip NWB/DWB BPFs with controllable isolation bandwidth for interference rejection,” IEEE Access, vol. 7, pp. 49169-49176, 2019. (中科院二区)

[31] X. K. Bi, G.-L. Huang, X. Zhang, and T. Yuan, “Design of wideband and high-gain slotline antenna using multi-mode radiator,” IEEE Access, vol. 7, pp. 54252-54260, 2019. (中科院二区)

[32] N.-W. Liu, L. Zhu, W.-W. Choi, and X. Zhang, “A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual-resonance,” IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1055-1062, Mar. 2017. (中科院一区,顶刊)

[33] N.-W. Liu, L. Zhu, W.-W. Choi, X. Zhang, “Wideband shorted patch antenna under radiation of dual resonant modes,” IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 2789-2796, Jun. 2017. (中科院一区,顶刊)

[34] N.-W. Liu, L. Zhu, W.-W. Choi, and X. Zhang, “A low-profile differential-fed patch antenna with bandwidth enhancement and sidelobe reduction under operation of TM10 and TM12 modes”, IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4854-4859, Sep. 2018. (中科院一区,顶刊)

[35] L.-P. Feng, L. Zhu, S. Zhang, and X. Zhang, “Compact Chebyshev Differential-Mode Bandpass Filter on/4 CPS Resonator With Intrinsic Common-Mode Rejection,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4047-4056, Sep. 2018. (中科院一区,顶刊)

[36] G. L. Huang, C. Z. Han, W. Xu, T. Yuan, and X. Zhang, “A compact 16-way high-power combiner implemented via 3-D metal printing technique for advanced radio-frequency electronics system applications,” IEEE Trans. Ind. Electron., vol. 66, no. 6, Jun. 2019. (中科院一区,顶刊)

专利

[1] 中国发明专利:朱玉建,张晓,谭挺艳,毕晓坤,李津,袁涛;一种高隔离度的双极化腔体辐射单元,ZL202010115407.4,授权,2022.05

[2] 中国发明专利:张晓,张聪,一种稳覆盖的超高频RFID平面近场天线ZL202110982262.2,中国发明专利,授权,2021.11

[3] 中国发明专利:张晓,李国雄,袁涛;一种具有一致辐射方向图且增益提高的宽带耦合贴片天线,ZL202111188709.5,授权,2022.02

[4] 中国发明专利:张晓,许志泳,张聪,袁涛;一种具有陡峭边沿选择特性的近场天线ZL202111498723.5,授权,2022.04

[5] 中国发明专利:毕晓坤,张晓,谭挺艳,袁涛;一种双通带带宽可调的可重构滤波器201911027917.X,授权,2020.12

[6] 中国发明专利:李国雄,张晓;一种具有双波束方向图的宽带圆极化贴片天线, CN****10157025.2,授权;

[7] 中国发明专利:钟增培,张晓,卢城知,袁涛;一种双频可展宽波束宽度的贴片天线, CN****11443575.2,授权;

[8] 中国发明专利:谭挺艳,张晓,袁涛;一种方向图可重构的贴片天线CN****10350438.8,授权;

[9] 中国发明专利:毕晓坤,张晓,谭挺艳,袁涛;一种双通带带宽可调的可重构滤波器,ZL****11027917.X,授权;

[10] 中国发明专利:朱玉建,张晓,谭挺艳,毕晓坤,李津,袁涛;一种高隔离度的双极化腔体辐射单元,CN****10115407.4,授权;

[11] 中国发明专利:洪凯东,张晓,袁涛; 一种具有稳定高增益的宽带贴片天线, CN****10494149.5,授权;

[12] 中国发明专利:洪凯东,张晓,黄冠龙,袁涛,吴琼森,祝雷;一种具有宽带及滤波器特性的高增益贴片天线,,CN****11140343.2,授权;

[13] 中国发明专利:廖淑敏,张晓,黄冠龙,袁涛,吴琼森,祝雷;;一种具有低剖面的宽带高增益贴片天线, CN****11141757.7,授权;

[14] 中国发明专利:张晓,洪凯东,袁涛; 一种方向图可重构的高增益贴片天线,****10403259.0,授权;

[15] 中国发明专利:张晓,李国雄,袁涛;一种具有一致辐射方向图且增益提高的宽带耦合贴片天线, ****11188709.5,授权;