刘晓鸿

发布时间:2025-10-28

个人简介

刘晓鸿,于清华大学计算机科学与技术系获得本科和博士学位,长期围绕医学人工智能开展研究。近年来在相关领域取得了一系列重要研究成果,在Nature Medicine、Nature Biomedical Engineering、Nature Genetics、Cell等高水平期刊上发表论文多篇。主持国家自然科学基金青年科学基金项目(B类)、青年科学基金项目(C类)。


主要研究方向

医学大语言模型和智能体,医学图像理解和生成,生物多组学大数据融合和分析,生物分子相互作用模拟和预测


代表性成果等

[1] X. Liu#, H. Liu#, G. Yang#, et al. A generalist medical language model for disease diagnosis assistance. Nature Medicine 2025

[2] G. Wang#*, X. Liu#, Z. Ying#, G. Yang, et al. Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial. Nature Medicine 2023

[3] G. Wang#*, X. Liu#, K. Wang#, Y. Gao#, G. Li#, D.T. Baptista-Hon#, et al. Deep-learning-enabled protein–protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution. Nature Medicine 2023

[4] G. Wang#*, K. Wang#, Y. Gao#, L. Chen, T. Gao, Y. Ma, Z. Jiang, G. Yang, F. Feng, S. Zhang, Y. Gu, G. Liu, L. Chen, L.-S. Ma, Y. Sang, Y. Xu*, G. Lin*, and X. Liu*. A generalized AI system for human embryo selection covering the entire IVF cycle via multi-modal contrastive learning. Patterns (2024).

[5] Y. Yang, X. Liu*, T. Gao, X. Xu, P. Zhang, and G. Wang*. Dense Contrastive-based Federated Learning for Dense Prediction Tasks on Medical Images. IEEE journal of biomedical and health informatics 2024



最新动态